ZBIÓR ZADAŃ Z CHEMII

Zadania z chemii z serwisu Chemia SOS – pomoc z chemii
Wszystkie te zadania (ponad 1100) pochodzą z serwisu Chemia SOS – Pomoc z Chemii. Jeśli chcesz otrzymać do nich odpowiedzi, kliknij w poniższy link, lub skopiuj go do przeglądarki:
https://ssl.dotpay.eu/?pid=1H5ZLFNPSEGUA4ZY3X915EUGE892EUWC
(cena za odpowiedzi do zadań 15 zł).
Po zakąskowaniu wpłaty na moim koncie otrzymasz odpowiedzi do zadań w formacie pdf.
Zobacz próbki rozwiązanych i wytłumaczonych przeze mnie zadań:
odpowiedzi do zadań z chemii
11.2. Dobór współczynników reakcji ... 86

12. Układ okresowy pierwiastków .. 88
 12.1. Różne reakcje .. 88
 12.2. Litowce .. 88
 12.3. Berylowce ... 88
 12.4. Borowce .. 88
 12.5. Węglowce .. 89
 12.6. Azotowce ... 91

13. Węgłowodory .. 92
 13.1. Węgłowodory nasycone (alkany) ... 92
 13.2. Węgłowodory nienasycone (alkeny i alkiny) ... 95
 13.3. Węgłowodory aromatyczne ... 98

14. Alkohole .. 99

15. Aldehydy, ketony ... 101

16. Kwas karboksylowe ... 102

17. Nitrozwiązki i aminy .. 104

18. Tłuszce i estry ... 105

19. Aminokwasy i białka ... 107

20. Cukry ... 108

21. Nazewnictwo związkuów i rysowanie wzorów .. 109
CHEMIA NIEORGANICZNA

1. Podstawowe pojęcia chemiczne

1.1. Masa atomowa i cząsteczkowa, masa atomu i cząsteczki

W układzie okresowym pierwiastków każdy atom oznaczony jest jedno lub dwuliterowym symbolem. Symbol ten pochodzi od pierwszej lub pierwszej i dalszej litery łacińskiej nazwy pierwiastka (gdy kilka pierwiastków ma nazwy rozpoczynające się od tej samej litery ich symbole, poza pierwszym są dwuliterowe):

<table>
<thead>
<tr>
<th>Nazwa łacińska</th>
<th>Nazwa polska</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nitrogenium</td>
<td>Azot</td>
<td>N</td>
</tr>
<tr>
<td>Chlorur</td>
<td>Chlor</td>
<td>Cl</td>
</tr>
<tr>
<td>Aluminium</td>
<td>Glin</td>
<td>Al</td>
</tr>
<tr>
<td>Kalur</td>
<td>Potas</td>
<td>K</td>
</tr>
<tr>
<td>Natrium</td>
<td>Sód</td>
<td>Na</td>
</tr>
<tr>
<td>Argentum</td>
<td>Srebro</td>
<td>Ag</td>
</tr>
<tr>
<td>Oxygenium</td>
<td>Tlen</td>
<td>O</td>
</tr>
</tbody>
</table>

Cząsteczka związku chemicznego składa się z atomów różnych pierwiastków, które są ze sobą połączone wiązaniami chemicznymi. Zapisując wzór związku chemicznego musimy podać z ilu i jakich atomów się on składa, czyli wymieniać wszystkie atomy w określonej kolejności. Najczęściej o kolejności atomów wymienianych w związku decyduje ich elektroujemność. Na początku wymieniane są atomy najmniej elektroujemne, na końcu najbardziej elektroujemne (elektroujemność pierwiastków w układzie okresowym wzrasta od strony lewej do prawej i z dołu do góry). Dlatego związek składający się z sodu i z chloru zapisujemy jako NaCl, natomiast z tlenu i węgla CO (chlór jest bardziej elektroujemny od sodu, a tlen od węgla). Krotność (ilość) atomów w cząsteczce związku wskazujemy indeksem stechiometrycznym. Indeksy stechiometryczne zapisujemy jako indeksy dolne i odnoszą się tylko do pierwiastka za którym są zapisane. Związek składający się z dwóch atomów sodu i jednego atomu tlenu zapiszemy jako Na₂O, a związek składający się z 10 atomów tlenu i czterech atomów fosforu zapiszemy jako P₄O₁₀.

Obliczenie masy cząsteczkowej związku polega na zsumowaniu mas atomowych atomów (jonów) wchodzących w skład związku. Masa cząsteczkowa może być wyrażona w u (junitach) lub w gramach. Ta ostatnia odnosi się do jednego mola związku. Siarczan(VI) sodu (Na₂SO₄) powstał z 2 atomów sodu, 1 atomu siarki i 4 atomów tlenu. Masy tych atomów odczytujemy z układu okresowego:

\[M = 2 \times 23 + 1 + 4 \times 16 = 142 \text{ g/mol}. \]

1.1-1.
Obliczyć masę atomu ołowiu w gramach.

1.1-2.
Obliczyć masę atomową pierwiastka, jeżeli jego atom ma masę \(5,32 \times 10^{-23} \) g.

1.1-3.
Obliczyć masę cząsteczkową: 1) CO, 2) CO₂, 3) Al₂O₃, 4) NaOH, 5) Al(OH)₃, 6) H₂SO₄.
1.1-4.
Obliczyć masę cząsteczki Al₂O₃ w gramach.

1.1-5.
Obliczyć masę cząsteczkową związku wiedząc, że cząsteczka zawiera 9 atomów węgla, 13 atomów wodoru oraz 2,33 \(10^{-23}\) g innych składników.

1.1-6.
Obliczyć wartości indeksów stechiometrycznych x:
- P₂Oₓ (masa cząsteczkowa 110 u)
- CₓHₓ (masa cząsteczkowa 30 u)
- HₓPₓOᵧ (masa cząsteczkowa 178 u)

1.1-7.
Jakie pierwiastki zaznaczono symbolem E?
- EO₂ (masa cząsteczkowa 44 u)
- E₂S₃ (masa cząsteczkowa 208 u)
- H₂EO₄ (masa cząsteczkowa 98 u)

1.1-8.
Z ilu atomów składa się cząsteczka boru, jeżeli jego masa cząsteczkowa wynosi 132 u?

1.1-9.
Jaki warunek musi spełniać masa atomowa pierwiastka E, aby masa cząsteczkowa tlenku E₂O była:
- mniejsza od masy cząsteczkowej tlenku EO₂
- większa od masy cząsteczkowej tlenku EO₂

1.1-10.
Jednowartościowy pierwiastek tworzy siarczek o masie cząsteczkowej 1,26 razy większej od masy cząsteczkowej tlenku. Jaki to pierwiastek?

1.1-11.
Obliczyć masę 2 \(10^{-23}\) cząsteczek dwutlenku węgla (CO₂).

1.1-12.
Obliczyć, ile atomów znajduje się w 5 cm³ rtęci, jeżeli gęstość jej wynosi 13,5 g/cm³.

Oblicz masę atomu tlenu w gramach wiedząc że masa atomowa tlenu wynosi 15,9994u.

1.1-14.
Jaką masę mają 3 mole kwasu siarkowego(VI) (H₂SO₄)?

1.2. Mol, masa molowa, liczność materii, liczba Avogadro
Wyobraźmy sobie, że w sklepie kupujemy 1kg śrub, 1kg nakrętek i 1kg podkładek do nich:

W domu kompletujemy zestaw: śruba + nakrętka i dwie podkładki. Okazuje się, że udało nam się skompletować 333 komplety, oraz pozostało 667 nakrętek i 2667 podkładek. Czy nie lepiej było kupić1000 szt. śrub, 1000 szt. nakrętek, oraz 2000 podkładek?
Podobnie jest z atomami. Gdy reagują ze sobą np. w stosunku 1:2, to najlepiej wziąć pewną ilość jednych atomów i dwukrotnie większą ilość drugich. Wtedy jesteśmy pewni, że wszystkie atomy przereagują ze sobą.
Podstawowe pojęcia chemiczne

Z uwagi na to, że atomy mają bardzo małe rozmiary, to oczywiście ich ilość musi być bardzo duża, by dało się je odmierzyć (odważyć). W chemii taką standardową ilością atomów, jonów, cząsteczek jest 1 mol, który liczy sobie \(6,023 \times 10^{23}\) sztuk.

Oczywiście ta liczba atomów ma swoją masę i nie musimy odliczać takiej ilości, możemy ją odważyć.

W przykładzie ze śrubkami jest podobnie. Mądry sprzedawca zważy jedną śrubkę: \(m_s\) (lub np. 10 sztuk i obliczy masę jednej śrubki), podobnie postąpi z nakrętką - \(m_n\) i podkładką - \(m_p\). Następnie zamiast odliczać 1000 śrub, odważy \(m=1000 \times m_s\) śrub, \(m=2000 \times m_n\) nakrętek, oraz \(m=2000 \times m_p\) podkładek.

Masę 1 mola atomów odnajdziemy w układzie okresowym, a dla 1 mola związku obliczymy sumując masy molowe atomów z uwzględnieniem odpowiednich współczynników stechiometrycznych.

1.2-1.
Ile moli glinu i ile moli siarki zawiera 0,6 mola siarczku glinu (Al\(_2\)S\(_3\))?

1.2-2.
Obliczyć, ile moli atomów tlenu zawartych jest w 2 molach kwasu siarkowego(VI) (H\(_2\)SO\(_4\)).

1.2-3.
Ile moli atomów tlenu i ile moli atomów wodoru zawierają 3 mole wody?

1.2-4.
Ile milimoli wapnia i ile milimoli chloru zawierają 2 milimole chlorku wapnia (CaCl\(_2\))?

1.2-5.
Która z próbek zawiera więcej atomów?
a) mol wodoru czy mol tlenu
b) mol wodoru czy mol helu
c) milimol SO\(_2\) czy milimol SO\(_3\)

1.2-6.
Czy w 7 molach wody jest więcej tlenu niż w 4 molach nadtlenku wodoru (H\(_2\)O\(_2\))

1.2-7.
Obliczyć, jaką liczbę moli stanowi: a) 9 g wody, b) 1 dm\(^3\) wody.

1.2-8.
Czysty nadtlenek wodoru jest cieczką o gęstości 1,45 g/cm\(^3\). Ile moli stanowi 1 dm\(^3\) nadtlenku wodoru?

1.2-9.
Obliczyć, jaką liczbę kilomoli stanowi 176 kg siarczku żelaza (FeS).

1.2-10.
Samiczki wielu insektów wydzielają feromony C\(_{19}\)H\(_{38}\)O, które przyciągają samczyki. Samczyk reaguje po wchłonięciu zaledwie 0,000000000001 g (czyli \(10^{-12}\) g) feromenu. Ile cząsteczek zawiera taka dawka?

1.2-11.
Jedna kropla wody morskiej zawiera ok. 50 miliardów atomów złota. Obliczyć, ile złota można by uzyskać ze 100 kg wody morskiej, jeżeli masa 1 kropli wynosi ok. 33 mg.

1.2-12.
Ile gramów siarczanu(VI) litu należy odważyć by znajdowało się tam tyle samo atomów litu co w 4,25g chlorku litu?

1.2-13.
Oblicz gęstość srebra wiedząc, że krystalizuje on w sieci typu RSC o wartości stałej sieciowej \(a=409\) pm, wartość liczby Avogadro \(6,023 \times 10^{23}\).

1.2-14.
W naczyniu znajduje się 72g wody. Oblicz ile cząsteczek wody znajduje się w tym naczyniu.

1.2-15.
Obliczyć:
a) masę 0,1 mola tlenu cząsteczkowego

http://www.chemia.sos.pl
Podstawowe pojęcia chemiczne

b) liczbę cząsteczek zawartych w 0,1 mola tlenu
c) jaką liczbę moli stanowi 0,36 g tlenu cząsteczkowego

1.2-16. W ilu gramach tlenku sodu jest zawarta taka sama liczba moli atomów tlenu, jaka jest w 18,8g tlenku potasu.

1.2-17. Ile atomów znajduje się w 0,2 mola żelaza?

1.2-18. Ile atomów znajduje się w 8 gramach wapnia?

1.2-19. Ile moli sodu zawarte jest w 60 gramach NaOH?

1.2-20. Ile moli fruktozy znajduje się w 0,5dm³ roztworu zawierającego 1,7kg fruktozy w 10dm³ roztworu?

1.2-21. Kości człowieka zbudowane są głównie z ortofosforanu(V) wapnia, który stanowi 3% całkowitej masy ciała. Oblicz, jaka ilość atomów wapnia zawarta jest w organizmie dziecka o wadze 25kg.

1.2-22. 58g mieszaniny zawierającej 35% Al₂(SO₄)₃·2H₂O i 65% KAl(SO₄)₂·18H₂O poddano suszeniu. Ile gram wody odparowano, jeśli w procesie suszenia usunięto całkowicie wodę krystalizacyjną.

1.2-23. Oblicz gdzie jest więcej gramów azotu: w 19g N₂O₃ czy w 27g N₂O₅.

1.2-24. Oblicz ile cząsteczek i moli cząsteczek o wzorze C₁₂H₂₂O₁₁ znajduje się w 1kg tej substancji?

1.2-25. Ile atomów zawiera prostopadłościan stalowy d=7,9g/cm³. Wymiary a=13,6cm, b=23,8cm, c=69,2cm.

1.2-26. Oblicz masę molową Ca(NO₃)₂

1.2-27. Oblicz ile cząstek znajduje się w 11,2dm³ amoniaku w warunkach normalnych.

1.2-28. Mol jest to...

1.2-29. W jakiej objętości CO₂ znajduje się taka sama liczba cząstek co w 10 dm³ amoniaku NH₃ w tych samych warunkach fizycznych.
1.3. Mol, objętość molowa gazu
Gazy charakteryzują się znaczną ściśliwością. Spowodowane jest to tym, że w stanie gazowym odległości pomiędzy cząsteczkami gazu są znaczne. Ścisłając (sprężając) gaz powodujemy, że te odległości się zmniejszają:

średnia odległość pomiędzy cząsteczkami

mol gazu \((6,023 \times 10^{23} \text{ cząsteczek}) \)
\(p=1013\text{hPa} \)
\(T=273K \)

Jeżeli weźmiemy inny gaz, jego cząsteczki będą miały nieco inne rozmiary, ale w porównaniu ze średnią odległością między cząsteczkami, rozmiar cząsteczki gazu nie ma znaczenia:

średnia odległość pomiędzy cząsteczkami

mol gazu \((6,023 \times 10^{23} \text{ cząsteczek}) \)
\(p=1013\text{hPa} \)
\(T=273K \)

Dlatego w tych samych warunkach ciśnienia i temperatury, taka sama ilość cząsteczek gazu zajmuje identyczną objętość. Zdanie to wypowiedziane trochę w innej kolejności: **w tych samych warunkach ciśnienia i temperatury, jednakowe objętości gazu zawierają jednakowe ilości cząsteczek** jest treścią hipotezy Avogadro.

W warunkach standardowych \(p=1013\text{hPa} \) i w temperaturze \(T=273K \) (0°C) każdy mol gazu zajmuje objętość 22,4dm³.

1.3.1. Ile milimoli cząsteczek zawiera 1 cm³ dowolnego gazu w warunkach normalnych?

1.3.2. Ustalić wzór sumaryczny tlenku azotu azotu wiedząc, że gęstość tego gazu w warunkach normalnych wynosi 1,96 g/dm³, a azot tworzy tlenki, w których jest I, II, III, IV i V-wartościowy.

1.3.3. Obliczyć w gramach masę cząsteczki gazu, którego gęstość wynosi 0,76 g/dm³ w warunkach normalnych.

1.3.4. Obliczyć masę cząsteczkową gazu, którego gęstość względem wodoru wynosi 8,5. Wskazówka: gęstość względem wodoru jest to stosunek masy cząsteczkowej (lub molowej) gazu do masy cząsteczkowej (lub molowej) wodoru.

1.3.5. Jaką objętość zajmie w warunkach normalnych jeden mol każdej z następujących substancji: tlenu, wody, dwutlenku węgla, siarki (\(d = 2,07 \text{ g/cm}^3 \)), wodoru?

1.3.6. Obliczyć masę:
 a) 2 dm³ tlenu odmierzonego w warunkach normalnych
 b) 0,5 m³ azotu odmierzonego w warunkach normalnych
 c) 25 cm³ tlenu węgla (CO) odmierzonego w warunkach normalnych
1.3-7.
W czterech zbiornikach o tej samej pojemności, tej samej masie, w tych samych warunkach ciśnienia i temperatury, znajdują się cztery gazy: tlen, azot, amoniak i dwutlenek węgla. Który z tych zbiorników jest najlżejszy?

1.3-8.
Jaką objętość zajmuje w warunkach normalnych: a) 5 g tlenu, b) 12 g CO₂, c) 0,2 g NH₃, d) 4 g N₂O, e) 70 g wodoru?

1.3-9.
W naczyniu o pojemności 100 cm³ umieszczono 0,2 g wodoru. Czy warunki (ciśnienie i temperatura), w jakich się on znajduje, mogą odpowiadać warunkom normalnym?

1.3-10.
W trzech naczyńach, w identycznych warunkach ciśnienia i temperatury, umieszczono: 5 g azotu, 5 g tlenku węgla i 5 g etylenu (C₂H₅). Czy objętości tych naczyń są równe?

1.3-11.
Butla zawiera 5 kg ciekłego chloru. Jaką objętość (w m³) zajmuje ta ilość chloru w warunkach normalnych?

1.3-12.
Czy w jednakowych warunkach, podane niżej ilości substancji zawierają jednakową liczbę cząsteczek: 1) 1 g wodoru i 1 g tlenu, 2) 1 dm³ wodoru i 1 dm³ tlenu, 3) 1 mol wodoru i 1 mol tlenu?

1.3-13.
W jakiej objętości tlenu jest tyle samo cząsteczek, co w 1 cm³ wodoru (w tych samych warunkach ciśnienia i temperatury)?

1.3-14.
W jakiej objętości helu znajduje się taka sama liczba atomów, co w 4 cm³ wodoru (w tych samych warunkach ciśnienia i temperatury)?

1.3-15.
Jaką objętość w warunkach normalnych zajmuje 12,04 \(10^{24}\) cząsteczek amoniaku?

1.3-16.
Ile cząsteczek znajduje się w 1 cm³ gazu w warunkach normalnych?

1.3-17.
W ilu dm³ dwutlenku węgla (CO₂) (warunki normalne) znajduje się 6 g węgla?

1.3-18.
Obliczyć gęstość w warunkach normalnych: a) tlenu, b) tlenku węgla CO, c) azotu, d) wodoru, e) siarkowodoru H₂S.

1.3-19.
Obliczyć, jaką liczbę moli stanowi:
a) 67,2 dm³ wodoru odmierzonego w warunkach normalnych
b) 5,6 dm³ metanu odmierzonego w warunkach normalnych
c) 11,2 dm³ dwutlenku siarki odmierzonego w warunkach normalnych

1.3-20.
Jaką objętość w warunkach normalnych zajmuje 48g metanu (CH₄)?

1.3-21.
Oblicz łączną masę substratów reakcji syntezy, z której można otrzymać 44,8dm³ siarkowodoru (w warunkach normalnych)

1.3-22.
Oblicz, w jakiej objętości tlenu znajduje się identyczna liczba cząsteczek O₂, co w 40mg cząsteczek MgO

1.3-23.
Oblicz objętość 4g N₂O
masę 6 dm³ CO
gęstość CH₄
Podstawowe pojęcia chemiczne

1.3-24.
44,8 dm³ NO w warunkach normalnych stanowi:
a) g substancji
b) moli substancji
c) cząstek substancji

1.3-25.
Obliczyć masę cząsteczkową gazu którego gęstość w warunkach normalnych wynosi 1,96g/dm³.

1.4. Prawa gazowe

Prawo Clapeyrona (prawo stanu gazu doskonałego) powstało z połączenia trzech praw gazowych odkrytych wcześniej. Jednakże wygodniej będzie nam dokonać czynności odwrotnej, czyli z prawa Clapeyrona wyprowadzić pozostałe prawa gazowe. Prawo stanu gazu doskonałego dla dowolnej ilości gazu przyjmuje postać: \(PV = nRT \), gdzie:

- \(P \) – ciśnienie gazu w Pa (hPa)
- \(V \) – objętość gazu w m³ (dm³)
- \(T \) – temperatura w kelwinach
- \(R \) – stała gazowa

Wiemy, że 1 mol gazu doskonałego w warunkach normalnych zajmuje objętość 22,4 dm³ (wielkość tę można wyliczyć z prawa Clapeyrona). Gazy rzeczywiste w przybliżeniu zachowują się podobnie. Wiedząc, że gęstość gazu \(d = \frac{m}{V} \), a dla \(V = 22,4 \text{ dm}^3 \) m=M, możemy obliczyć gęstość dowolnego gazu w warunkach normalnych: \(d = \frac{M}{22,4 \text{ dm}^3} \). Gęstość gazu w dowolnych warunkach można obliczyć z prawa Clapeyrona (n=m/M): \(PV = nRT \), czyli \(PVM = mRT \), oraz \(d = \frac{m}{V} = \frac{PM}{RT} \)

1.4-1.
Oblicz, jaką masę i objętość mają 103 mole tlenku węgla(IV) (dwutlenku węgla)

1.4-2.
Oblicz masę:
a) 2 dm³ tlenu
b) 0,5 m³ azotu
c) 25 cm³ tlenku węgla
Gazy odmierzone w warunkach normalnych

1.4-3.
Obliczyć liczbę moli dwutlenku węgla, który zajmuje objętość 2,4 dm³ w temperaturze 291 K pod ciśnieniem 1010 hPa.

1.4-4.
Obliczyć masę dwutlenku siarki (SO₂), który zajmuje objętość 30 cm³ w temperaturze 293 K pod ciśnieniem normalnym.

1.4-5.
Butla zawiera 5 kg chloru. Jaką objętość (w m³) zajmie ta ilość chloru w temp. 295 K pod ciśnieniem normalnym?
1.4.6. Obliczyć liczbę cząsteczek, jaka znajduje się w 22,4 dm3 azotu odmierzonego w temperaturze 295 K pod ciśnieniem normalnym.

1.4.7. Obliczyć gęstość amoniaku w temperaturze 291 K pod ciśnieniem 1010 hPa.

1.4.8. Obliczyć masę cząsteczkową gazu, jeżeli jego gęstość w temperaturze 293 K pod ciśnieniem 1000 hPa wynosi 1,15 g/dm3.

1.4.9. Tak zwany „suchy lód” (stały CO$_2$) ma gęstość 1,5 g/cm3. Jakie będzie ciśnienie w uprzednio opróżnionym zbiorniku o pojemności 1 dm3, w którym całkowicie przesublimuje 1 cm3 „suchego lodu” w temp. 294 K?

1.4.10. Oblicz objętość dilitenu siarki powstającego w temperaturze 25°C i pod ciśnieniem 1 atm, w wyniku spalenia 10 g siarki w reakcji: 1 mol oktasiarki z ośmioma molami diltenu daje osiem moli dilitenu siarki Traktuj diliten jako gaz doskonały

1.4.11. Ile cząsteczek znajduje się w naczyniu o pojemności V =1dm3, jeżeli wiadomo, że wypełniający je gaz jest gazem doskonałym pod ciśnieniem p = 1,105Pa,a jego temperatura wynosi t = 100 stopni Celsjusza?

1.4.12. Pęcherzyk powietrza wypływając z dna jeziora pod powierzchnią wody zwiększa swoją objętość 3x, zakładając, że temperatura wody nie zmienia się wraz z głębokością. Oblicz głębokość jeziora.

1.4.13. Do litrowego naczynia zawierającego 100 cm3 10% roztworu HCl (d=1,1 g/dm3) o temp. 21°C, wrzucono 3,27 g cynku, po czym naczynie szklane zamknięto. Jakie ciśnienie utworzył się w naczyniu, jeżeli temperatura nie ulegnie zmianie?

1.4.14. W celu otrzymania HCl sporządzono mieszankę chloru i wodoru o łącznej objętości 0,5dm3 (warunki normalne) i masie 1g. Którego substratu użyto w nadmiarze?

1.4.15. Dwulitrowy pojemnik wypełniony azotem wazy 50,00 g. Obliczyć pod jakim ciśnieniem [Pa] jest ten gaz, jeżeli temperatura wynosi 20°C. W tych samych warunkach gazu i w temperaturze 30°C ten sam pojemnik z argonem wazy 51,76g.

1.4.16. Objętość gazu w temperaturze 300K i pod ciśnieniem 1400 hPa wynosiła 1,2 dm3. Jaką objętość zajmie ten gaz w warunkach normalnych?

1.4.17. Oblicz masę powietrza znajdującego się w pomieszczeniu o wymiarach 10m35m33m

1.4.18. Oblicz na jak długo wystarczy tlenu 20 uczniom znajdującym się w pracowni chemicznej (zakładając że pomieszczenie jest hermetyczne), jeżeli każdy z nich zużywa ok. 0,1 m3 tlenu na godzinę

1.5. Podstawowe prawa chemiczne

1.5.1. Podczas rozkładu 10g pewnej substancji otrzymano 5,6 substancji x oraz 2,23 dm3 gazu. Ustal jaki gaz otrzymano?

1.5.2. Podczas prażenia wapienia otrzymano 112 g wapna palonego i 88 g dwutlenku węgla. Ile gramów wapna prażono?
1.5-3.
Tlen w warunkach laboratoryjnych otrzymuje się między innymi w wyniku ogrzewania manganianu(VII)potasu. Z 10g tego związku otrzymano 8,9g produktów stałych i tlen. Oblicz objętość, którą zajął w cylindrze otrzymany gaz (d=0,00143 g/cm³).

1.5-4.
Z rozkładu wody otrzymano 280 cm³ wodoru i 140 cm³ tlenu. Oblicz masę rozłożonej wody?
2. Budowa atomu, układ okresowy pierwiastków

2.1. Konfiguracja elektronowa pierwiastków

Model powłokowy atomu (model Bohra)

Właściwości chemiczne, a także fizyczne pierwiastków zależą od ich położenia w układzie okresowym pierwiastków. Można powiedzieć, że położenie pierwiastka w układzie okresowym zależy od ilości elektronów na ostatniej powłoce (przynależność pierwiastka do określonej grupy), oraz ilości powłok (położenie pierwiastka w okresie lub inaczej nr okresu).

Elektrony wokół jądra atomowego rozmieszczone są na powłokach, które nazywane są K, L, M, N, O... itd. (pierwsza, znajdujaca się najbliżej jądra powłoka nazywana jest powłoką K, a kolejne nazywane są od kolejnych liter alfabetu). Elektrony znajdujące się na tej samej powłoce różnią się nieznacznie energią, natomiast elektrony znajdujące się na dwóch różnych powłokach różnią się znacznie energią.

Jeżeli ponumerujemy powłoki:

<table>
<thead>
<tr>
<th>nr powłoki</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>nazwa powłoki</td>
<td>K</td>
<td>L</td>
<td>M</td>
<td>N</td>
<td>O</td>
</tr>
</tbody>
</table>

To liczby określające nr powłoki nazywane są główną liczbą kwantową n. Maksymalna ilość elektronów na powłoce określona jest wzorem: Maksymalna ilość elektronów=2n², czyli na poszczególnych powłokach może być:

<table>
<thead>
<tr>
<th>nr powłoki</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>maksymalna ilość elektronów na powłoce</td>
<td>2</td>
<td>8</td>
<td>18</td>
<td>32</td>
<td>50</td>
</tr>
</tbody>
</table>

Możemy powiedzieć, że główna liczba kwantowa n określa maksymalną ilość elektronów na powłoce, lub energię elektronu.

Każdy atom jest elektrycznie obojętny. W jądrze atomu znajdują się protony i neutony (noszącą wspólną nazwę nukleonów – składniki jądra). Jak nazwa wskazuje neutrony są elektrycznie obojętne, natomiast protony posiadają jednostkowy ładunek elektryczny +1. Elektrony posiadają ładunek -1 i w atomie liczba protonów w jądrze musi być równa liczbie elektronów na wszystkich powłokach. Liczbę protonów (elektronów) w atomie rozpoznajemy po liczbie atomowej (nazywaną również liczbą porządkową ponieważ wskazuje ona położenie pierwiastka w układzie okresowym pierwiastków). Druga z liczb w układzie okresowym pierwiastków nazywana jest masą atomową. P zaokrągleniu do liczby całkowitej (w górę lub w dół) nosi nazwę liczby masowej. W przypadku skandu liczba masowa A wynosi 45, 44 (lub inne wartości bliskie 45). Liczba neutronów w jądrze równa jest liczba neutronów w jądrze=A-Z.

Rozpisywanie elektronów na powłokach rozpoczynamy od:

- rozmieszczenia elektronów na ostatniej powłoce, a następnie na powłokach najbardziej wewnętrznych, poczynając od powłoki K, zgodnie ze wzorem: liczba elektronów=2n².

Na ostatniej powłoce, zwanej powloką walencyjną, znajdują się elektrony nazywane elektronami walencyjnymi. Liczba tych elektronów równa jest liczbie grupy dla grup od nr 1 do 2, oraz nr grupy 10, dla grup o numerze większym od 10. Pierwiastki z grup od 3 do 12 są pierwiastkami grup pobocznych. Dla tych pierwiastków (z grup od 3 do 10) ilość elektronów na ostatniej powłoce równa jest zawsze 2 (wyjątkiem są pierwiastki grupy 11, dla których ilość elektronów na ostatniej powłoce równa jest 1, ale one uwzględnione są w podanej wyżej regule.)
Dla przykładu rozpatrzmy rozmieszczenie elektronów (konfigurację elektronową) na powłokach dla argonu ^{18}Ar i ^{25}Mn. Argon leży w 3 okresie i 18 grupie, liczba atomowa 18. Ma więc 3 powłoki (3 okres) K, L, M. Na ostatniej powłoce ma 18-10=8 elektronów, a na pierwszej (K) 2 elektronów: $K^2L^6M^8$. Z rachunku wynika, że na powłoce L musi mieć 18-2-8=8elektronów. Konfiguracja elektronowa argonu to $K^2L^6M^8$.

Model atomu wg Bohra nazywa się modelem planetarnym, ponieważ według tego modelu elektrony krąży wokół jądra tak jak planety wokół słońca. Chociaż model ten tłumaczy niektóre właściwości pierwiastków, chociażby chęć uzyskania oktetu elektronowego, czyli uzyskania konfiguracji najbliższego gazu szlachetnego, to trudno przy jego pomocy wytłumaczyć powstawanie wiązań.

Model kwantowy atomu (model Schrödingera)

Obecnie, aby przedstawić budowę atomu, oraz tworzenie się wiązań chemicznych korzystamy z modelu opartego na mechanice kwantowej (modelu Schrödingera). Według tego modelu elektrony w atomie znajdują się na orbitalach (nazywanych czasami podpowłokami). Orbitale nazywamy przestrzeniami wokół jądra, w której mogą znajdować się maksymalnie 2 elektrony. Kształt orbitalu wynika z rozwiązania równania Schrödingera i w tym ujęciu, orbital jest niczym innym, jak funkcją matematyczną z pewnymi parametrami.

Każdej powłoce przyporządkowaliśmy wcześniej pewne liczby naturalne, które nazwaliśmy główną liczbą kwantową n. Liczby te określają jednocześnie ilość typów orbitali (podpowiórek) w danej powłoce:

<table>
<thead>
<tr>
<th>Główna liczba kwantowa n</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ilość typów orbitali (ilość podpowiórek)</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td></td>
</tr>
</tbody>
</table>

Pierwszym parametrem, w równaniu Schrödingera, określającym orbitale jest główna liczba kwantowa n, która tak jak poprzednio określa energię elektronu w atomie, wielkość orbitalu lub ilość typów orbitali.

Obok głównej liczby kwantowej n, istnieje poczynność liczba kwantowa l, która przyjmuje wartości $l=0$ do $l=n-1$. Poboczna liczba kwantowa określa kształt orbitalu (oraz pośrednio ilość różnych typów orbitali):

<table>
<thead>
<tr>
<th>$n=1$</th>
<th>1</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
</tr>
</thead>
<tbody>
<tr>
<td>$l=0$</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>$l=1$</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
</tr>
</tbody>
</table>

Jeżeli główna liczba kwantowa wynosi 5, to możemy mieć 5 rodzajów (typów) orbitali. Rodzaje orbitali opisane są poboczną liczbą kwantową l, przyjmującą wartości $0, 1, 2, 3, 4$. Orbitale opisane poboczną liczbą kwantową $l=0$ nazywamy orbitalem typu s (od słowa single – główny). Jeżeli $l=1$, to orbitale opisany taką poboczną liczbą kwantową nazywamy orbitalem p (od słowa principal – główny). Kolejne orbitale nazywane są d dla $l=2$, f dla $l=3$, g dla $l=4$ itd. (dalsze orbitale przyjmują nazwy od kolejnych liter alfabetu). Dla głównej liczby kwantowej n, jest tyle typów orbitali, ile jest pobocznych liczb kwantowych. Na przykład dla głównej liczby kwantowej 5 jest 5 typów orbitali) ponieważ mamy 5 pobocznych liczb kwantowych, które przyjmują wartości: $0, 1, 2, 3, 4$.

Każdy typ orbitalu musi być umiejscowiony w przestrzeni. Rozmieszczenie orbitalu w przestrzeni opisuje magnetyczną liczbę kwantową m, która przyjmuje wartości $m=-l$ oraz $m+l$. Oczywiście magnetyczna liczba kwantowa m określa nam ilość orbitali danego typu.

Jeżeli $n=1$, to $l=0$ i $m=0$. Oznacza to, że istnieje tylko 1 orbitał typu s. Dla $n=2$ i może przyjacić wartości 0 i 1. Dla $l=0$, czyli dla głównej liczby kwantowej 2 istnieje jeden orbitał typu s, oznaczany jako $2s$, ale dla $l=1$ (czyli dla orbitał $2p$) możemy przypisać magnetyczne liczby kwantowe $m=-1, 0, 1$. Oznacza to, że mamy 3 orbitale typu $2p$. W poniższej tabeli zebrane zostały typy orbitali dla głównej liczby kwantowej $n=5$:

<table>
<thead>
<tr>
<th>główna liczba kwantowa</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>poboczna liczba kwantowa</td>
<td>0</td>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>typ orbitalu</td>
<td>s</td>
<td>p</td>
<td>d</td>
<td>f</td>
<td>g</td>
</tr>
<tr>
<td>magnetyczna liczba kwantowa</td>
<td>$-1, 0, 1$</td>
<td>$-2, -1, 0, 1, 2$</td>
<td>$-3, -2, -1, 0, 1, 2$</td>
<td>$-4, -3, -2, -1, 0, 1, 2$</td>
<td>$-5, -4, -3, -2, -1, 0, 1, 2$</td>
</tr>
<tr>
<td>ilość orbitali danego typu ($l=1$)</td>
<td>1</td>
<td>3</td>
<td>5</td>
<td>7</td>
<td>9</td>
</tr>
<tr>
<td>kształt orbitalu</td>
<td>lub</td>
<td>lub</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2.1.1.

Podaj rozmieszczenie elektronów w powłokach następujących jonów: Na^+, Br^-, Ca^{2+}.

2.1.2.

Jaki ładunek elektryczny będą wykazywały jony: potasu, magnezu, bromu, siarki, glinu, telluru?

http://www.chemia.sos.pl
2.1-3. Na podstawie podanej konfiguracji elektronowej atomu pierwiastka określ położenie tego pierwiastka w układzie okresowym, symbol chemiczny, liczbę atomową i masową.
 a) 1s²2s²2p³
 b) 1s²2s²2p³3s²3p⁶3d³4s²4p⁶
 c) [Ar]3d⁶4s²

2.1-4. Dla atomów pierwiastków o podanych konfiguracjach elektronowych określ liczbę powłok elektronowych w atomie, liczbę elektronów walencyjnych i elektronów niesparowanych, skład jądra atomowego oraz rodzaj i ładunek jonu, który dany atom może utworzyć, dążąc do uzyskania konfiguracji elektronowej najbliższego gazu szlachetnego.
 a) 1s²2s²2p³3s²3p⁶
 b) 1s²2s²2p³3s²3p⁶3d⁶4s²
 c) [Kr]5s²

2.1-5. Wyjaśnij, dlaczego promień jonu pierwiastka z grupy 1 jest krótszy od promienia atomu tego pierwiastka, natomiast promień anionu pierwiastka położonego w tym samym okresie, lecz w grupie 17 jest dłuższy od promienia atomu.

2.1-6. Uzasadnij, który z pierwiastków będzie wykazywał większy charakter metaliczny
 a) sód czy potas
 b) sód czy magnez

2.1-7. Uzasadnij, który z pierwiastków będzie wykazywał większy charakter niemetaliczny.
 a) siarka czy chlor
 b) fluor czy chlor

2.1-9. Określ liczbę stanów kwantowych:
 a) w podpowłoce d czwartej powłoki
 b) w podpowłoce p czwartej powłoki
 c) w powłoce n=4

2.1-10. Podaj wartość liczb kwantowych n, l, m dla czwartej powłoki.

2.1-11. Jakie orbitale określane są przez liczby kwantowe?
 a) n=1, l=0
 b) n=2, l=0
 c) n=2, l=1
 d) n=3, l=0
 e) n=3, l=2
 f) n=4, l=2
 g) n=4, l=3

2.1-12. Ile elektronów może znajdować się w podpowłokach?
 a) p
 b) d
 c) f
 d) s

2.1-13. Energię elektronu w atomie wodoru na powłoce n można wyrazić jako funkcję energii na powłoce pierwszej (E₁) i wartości n. Przedstawić tę zależność w postaci: En=f(E₁,n) i obliczyć energię na powłoce czwartej, przyjmując E₁=-13,6 eV.
2.1-14.
Rozpisz konfigurację elektronową następujących pierwiastków: Na, Ca, Cl, Si, Cu

2.2. Budowa cząsteczki, budowa wiązania chemicznego

2.2.1.
Podaj nazwę atomu pierwiastka, w którego stronę będzie przesunięta wspólna para elektronowa w podanych cząsteczkach związków chemicznych
a) H₂O
b) HF
c) NH₃
d) CH₄
e) SiH₄

2.2.2.
Przedstaw mechanizm powstawania wiązania koordynacyjnego.
a) w cząsteczce SO₂
b) w jenie NH₄⁺

2.2.3.
W podanych cząsteczkach związków chemicznych wskaż akceptor i donor pary elektronnej.
a) CO
b) SO₂
c) HNO₃
d) HClO₄

2.2.4.
Wyjaśnij, kiedy powstają:
a) wiązania metaliczne,
b) wiązania wodorowe,
c) oddziaływania międzycząsteczkowe - siły van der Waalsa.

2.2.5.
Wyjaśnij mechanizm powstawania wiązania jonowego.

2.2.6.
Wymień cechy, które decydują o przewadze wiązania jonowego w danym związku chemicznym.

2.2.7.
Wyjaśnij mechanizm powstawania wiązania kowalencyjnego niespolaryzowanego.

2.2.8.
Przedstaw mechanizm powstawania wiązania kowalencyjnego w następujących cząsteczkach (elektrony walencyjne zaznacz kropkami).
a) Cl₂
b) O₂
c) N₂

2.2.9.
Wyjaśnij, na czym polega mechanizm tworzenia się wiązania kowalencyjnego spolaryzowanego i w jakich warunkach ono powstaje.

2.2.10.
Wymień 3-4 cechy charakterystyczne związków chemicznych o budowie jonowej i kowalencyjnej.

2.2.11.
Określ jaki to jest typ wiązania oraz napisz wzory kreskowe i kropkowe a) KCl b) CaBr₂ c) NH₃ d) N₂

http://www.chemia.sos.pl
2.2.12. Które pierwiastki tworzą wodorki typu \(\text{EH}_3 \), a ich atomy mają trzy powłoki?

2.2.13. Jaki ładunek elektryczny będą wykazywały jony: potasu, magnezu, bromu, siarki, glinu i telluru?

2.2.14. Korzystając z tablicy elektroujemności, podaj rodzaje wiązań w \(\text{Cl}_2, \text{KCl}, \text{HCl} \), oraz opisz jedno z nich.

2.2.15. Przedstaw wzory elektronowe: \(\text{Na}_2\text{CO}_3 \) oraz \(\text{KNO}_2 \)

2.2.16. Na podstawie energii wiązań uzasadnić, dlaczego azot tworzy cząsteczki \(\text{N}_2 \), a fosfor \(\text{P}_4 \) (o kształcie tetraedra, w którym każdy atom P tworzy trzy pojedyncze wiązania z pozostałymi atomami).

2.2.17. Moment dipolowy cząsteczki \(\text{HCl} \) wynosi 1,08 D. Długość wiązania jest równa 127 pm. Obliczyć ładunek zgromadzony na atomach chloru i wodoru.

2.3. Hybrydyzacja, geometria cząsteczki, metoda VSEPR

2.3.1. Wskaż drobiny, które mają kształt trójkąta równobocznego i drobiny o kształcie trójkąta równoramiennego.
\(\text{BF}_3, \text{OF}_2, \text{CO}_3^2-, \text{CS}_2, \text{PbCl}_2 \)

2.3.2. Przedstaw zapisem klatkowym:
\begin{itemize}
 \item a) atom węgla w stanach podstawowym i wzbudzonym,
 \item b) atom chloru w stanach podstawowym i wzbudzonym pierwszym, drugim oraz trzecim
\end{itemize}

2.3.3. Podaj rodzaj wiązania chemicznego (\(\sigma, \pi \)), który powstanie w wyniku wymieszania:
\begin{itemize}
 \item a) dwóch orbitali s
 \item b) jednego orbitalu s i jednego orbitalu p
 \item c) orbitali px i px
 \item d) orbitali py i py.
\end{itemize}
Naszkicuj kształt tych orbitali cząsteczkowych.

2.3.4. Podaj typ hybrydyzacji i określ kształt cząsteczki, jeżeli orbitale zhybrydzowane powstały w wyniku wymieszania:
\begin{itemize}
 \item a) jednego orbitalu s i jednego orbitalu p,
 \item b) jednego orbitalu s i dwóch orbitali p,
 \item c) jednego orbitalu s i trzech orbitali p.
\end{itemize}

2.3.5. Określ typ hybrydyzacji atomu centralnego i naszkicuj kształt cząsteczki związków chemicznych o podanych wzorach:
\begin{itemize}
 \item a) \(\text{BeCl}_2 \)
 \item b) \(\text{BF}_3 \)
 \item c) \(\text{CH}_4 \)
\end{itemize}

2.3.6. Drobiny o podanych wzorach podziel ze względu na typ hybrydyzacji (sp, sp2, sp3), której ulega atom centralny:
Wskazówka: hybrydyzacji nie ulegają te orbitale, które tworzą wiązania typu \(\pi \).
\(\text{BeH}_2, \text{CO}_2, \text{HCN}, \text{BCl}_3, \text{SO}_3, \text{SO}_2, \text{CO}_3^{2-}, \text{CCl}_4, \text{H}_2\text{O}, \text{NH}_3, \text{H}_2\text{SO}_4 \)
2.3.7.
Ustalając budowę cząsteczek metodą VSEPR, korzysta się ze wzoru EAnHm. Za pomocą tego wzoru przedstaw następujące wzory cząsteczek: H_2O, HClO, HCl, O_3

2.3.8.
Oblicz liczbę elektronów walencyjnych w cząsteczkach i jonach: H_2S, HClO_4, CS_2, SO_4^{2-}, Br_2, O_3, N_2, NO_3^-, NO_2^+

2.3.9.
Korzystając z metody VSEPR, określ budowę cząsteczki CH_3Br_2 i jonu SO_4^{2-}.

2.3.10.
Korzystając z metody VSEPR, wskaż cząsteczki i jony które mają budowę kątową oraz mające budowę liniową. BeO_2^-, H_2O, CS_2, HClO

2.3.11.
Zaproponuj wzór drobiny o budowie tetraedrycznej (tetragonalnej), w której atom centralny będzie otoczony:

a) czterema ligandami o trzech wolnych parach elektronowych
b) czterema ligandami, które nie mają wolnych par elektronowych

2.3.12.
Narysuj wzory elektronowe następujących cząsteczek i określ ich kształt. a) CCl_4, KCl b) Ni_3, BeCl_2, c) HCN, H_2S. Naszkicuj struktury przestrzenne odpowiadające tym cząsteczkom.

2.4. Promieniotwórczość
Wszystkie równania reakcji powinniśmy traktować jak równania matematyczne (prawo zachowania masy, prawo zachowania ładunku). W przypadku zwykłych reakcji prawo zachowania masy kontrolujemy licząc ilość atomów każdego pierwiastka. Przy równaniach reakcji jądrowych ten sposób nie jest właściwy, ponieważ jedne atomy przemieniają się w inne, ale prawo zachowania masy i ładunku też nas obowiązuje. Kontrolujemy je licząc masy atomowe i liczby atomowe. Dla pierwiastka X stosujemy następujące oznaczenia:

liczba masowa (masa atomowa)
liczba atomowa (ładunek jądra)

Promieniowanie emitowane przez jądro atomowe oznaczamy w następujący sposób:

a) α - jądra helu He, $\frac{4}{2}\alpha$ lub $\frac{2}{2}\text{He}$
b) β^- - elektrony, $\frac{-1}{0}\beta$ lub $\frac{0}{-1}\text{e}$
c) β^+ - pozytony, $\frac{0}{1}\beta^+$
d) n – neutron, $\frac{0}{0}\text{n}$
e) γ – promieniowanie gamma, $\frac{0}{0}\gamma$.

Poprawnie zapisanie równania reakcji jądrowej sprowadza się do zrównania liczb masowych i liczb atomowych po lewej i prawej stronie równania reakcji:

$\text{C}^{12} + \alpha \rightarrow X + p$ możemy zapisać jako: $\text{C}^{12} + \frac{4}{2}\text{He} \rightarrow \frac{Z}{A}X + \frac{1}{1}\text{p}$
czyli: $\text{A}=15$, $\text{Z}=7$
i ostatecznie: $\text{C}^{12} + \frac{4}{2}\text{He} \rightarrow \frac{15}{7}\text{N} + \frac{1}{1}\text{p}$
(w układzie okresowym pierwiastków odnajdujemy, że pierwiastkiem o liczbie atomowej 7 jest azot).
Dla reakcji rozpadu promieniotwórczego zawartość promieniotwórczego izotopu zmienia się w czasie wg zależności:
\[
\ln \frac{C_t}{C_0} = k \cdot t.
\]
Dla tych charakterystyczny jest czas po którym zaniknie połowa substratu, czyli czas połowicznego zaniku (połowicznej przemiany), oznaczony jako \(t_{1/2} \) lub \(\tau \). Po czasie tym oczywiście \(C = \frac{1}{2}C_0 \).

Podstawiając we wzorze \(\frac{1}{2}C_0 \) za \(C \) oraz \(\tau \) za \(t \) otrzymamy:
\[
\ln \frac{C_0}{C} = \ln \frac{2C_0}{C} = \ln 2, \text{ czyli } k \tau = 0.693.
\]

W obliczeniach można wykorzystywać powyższe wzory, lub skorzystać z następujących zależności:
\[
\text{żełż następuje przemiana } A \rightarrow B, \text{ to:}
\]
po czasie \(t \) zostanie połowa masy początkowej izotopu \(A \);
po czasie \(2t \) zostanie \(1/4 \) masy początkowej izotopu \(A \);
po czasie \(3t \) zostanie \(1/8 \) masy początkowej izotopu \(A \);
po czasie \(t \) zostanie
\[
m = m_0 (1/2)^n.
\]
Z ostatniej zależności można obliczyć okres półtrwania:
\[
t = \frac{m_0}{m} \frac{t}{2^n}, \text{ czyli } t_{1/2} = \frac{t}{n}.
\]

Zawartość izotopu promieniotwórczego w preparacie zmniejszyła się czterokrotnie w ciągu 4 lat. Określ czas połowicznego rozpadu.

Odp.

Jeżeli zawartość promieniotwórczego izotopu zmniejszyła się 4-krotnie, to \(m_0/m = 4 \), czyli 4 = 2^2, co oznacza, że \(t/t = 2 \). Jeżeli \(t = 4 \) lata, to \(t = t/n = 4 \) lata / 2 = 2 lata.

2.4.1.
Czas połowicznego rozpadu izotopu kobaltu Co (liczba atomowa: 27, masa atomowa: 60), który emituje cząstki beta minus (\(\beta^- \)) wynosi 5 lat.
- jaki pierwiastek powstanie w wyniku tej przemiany?
- po ilu latach z 8g próbki pozostanie 0,5 g?

2.4.2.
Dopisz szósty człon w szeregu i określ prawidłowość według której został ułożony: 219-Rn, 215-Po, 215-At, 211-Bi, 211-Po...

2.4.3.
Próbka pewnego materiału promieniotwórczego zawiera obecnie 40g izotopu Co-60 o okresie półtrwania równym 5 lat. Oblicz, ile gramów tego izotopu rozpadnie się w ciągu najbliższych 15 lat.

2.4.4.

2.4.5.
Jaka była masa izotopu kobaltu-60 10 lat temu, jeżeli okres półtrwania wynosi 5 lat, a próbka zawiera obecnie 0,1 g tego izotopu.

2.4.6.
Zawartość izotopu promieniotwórczego w preparacie zmniejszyła się czterokrotnie w ciągu 4 lat. Określ czas połowicznego rozpadu.

2.4.7.
Oblicz długość fali Balmera przy powrocie elektronu z 3 powłoki.

2.4.8.
Okres połowicznego rozpadu izotopu 209/84 Po wynosi 102 lata. Sporządź wykres zależności masy pierwiastka od czasu i odczytaj z wykresu:
- a)masę pierwiastka który pozostanie z próbki o masie 100mg po upływie 153 lat
- b) czas, po którym z próbki o masie 100mg pozostało 12,5 mg pierwiastka.
2.4.9.
Podaj trwały izotop, który powstanie z Uranu $^{238}_{92}$U, w wyniku 8 przemian typu alfa i 6 typu beta.

2.4.10.
Pierwiastek promieniotwórczy $^{226}_{88}$Ra wyemitował 3 cząstki α i 3 cząstki β. Podaj skład jądra nowo powstałego atomu.

2.4.11.
Oblicz jaki musi być czas połowicznego rozpadu nuklidu promieniotwórczego aby rozpad 30% jąder nastąpił w ciągu 4h.

2.4.12.
Uzupełnij równania reakcji przemian jądrowych

$244\text{Am} \rightarrow 134\text{I} + \ldots\ldots + 3\text{___H}$

$^{61}_{28}\text{Ni} + ^1\text{H} \rightarrow \ldots\ldots + ^1\text{H}$

$^{238}_{92}\text{U} + \ldots\ldots \rightarrow 247\text{Es} + 5\text{___H}$

$^{44}_{22}\text{Ti} + 0\text{e} \rightarrow \ldots\ldots$

$^{53}_{26}\text{Co} \rightarrow ^{52}\text{Fe} + \ldots\ldots$

2.5. Izotopy
Wyobraźmy sobie następujący zbiór kulek:
10 sztuk kulek czerwonych o masie 3g każda,
7 sztuk kulek niebieskich o masie 2g każda.

Średnia masa kuli nie jest średnią matematyczną $(\frac{3g+2g}{2}=2.5g)$, a tak zwaną średnią ważoną. Masa tych kulek wynosi 44g, czyli średnia masa kuli $m=\frac{44g}{17}=2.588g$.

10 kulek czerwonych na 17 wszystkich stanowi $c_{60}=\frac{10}{17}=58.82\%$, natomiast 7 kulek niebieskich na 17 wszystkich stanowi $c_{65}=\frac{7}{17}=41.18\%$. Z definicji procentów możemy powiedzieć, że na 100 kulek mamy 58,82 sztuki czerwonych kulek, oraz 41,18 sztuk kulek niebieskich. Średnia masa kuli (średnia ważona): $m=\frac{58.82\cdot3g+41.18\cdot2g}{100}=2.588g$.

W podobny sposób oblicza się średnią masę pierwiastka mając jego skład izotopowy i masy poszczególnych izotopów.

Ile wynosiła by masa atomowa wodoru gdyby co dziesiątą cząsteczką była cząsteczka deuteru D_2.

Odp. Gdyby co dziesiątą cząsteczką była cząsteczka deuteru, to znaczy, że na 10 cząsteczek przypadałaby cząsteczka deuteru D_2. Zawartość deuteru wynosiła by $c_{D}=100\%\cdot\frac{1}{10}=10\%$. Pozostałość do 100% stanowił by prot (H$_2$), czyli $c_{H}=100\%-10\%=90\%$.

Masa atomowa deuteru $M_{D}=2u$, natomiast protu $M_{H}=1u$. Średnia masa atomowa wodoru wynosiła by więc

$\bar{M}=\frac{10\%\cdot2u+90\%\cdot1u}{100\%}=1,1u$

2.5.1.
Obliczyć masę atomową pierwiastka stanowiącego mieszaninę dwóch izotopów o liczbach masowych 69 (60,2%) i 71 (39,8%). Odszukać ten pierwiastek w układzie okresowym.

2.5.2.
Naturalna miedź składa się z izotopów Cu-63 i Cu-65. Stosunek liczby atomów tych izotopów wynosi 8:3. Oblicz średnią masę miedzi.

2.5.3.
Naturalny azot składa się z izotopów N-14; N-15, a naturalny tlen z O-16; O-17 i O-18. Ile różnych postaci cząsteczek zawiera NO$_2$?

http://www.chemia.sos.pl
2.5.4. Oblicz skład procentowy mieszaniny 2 izotopów litu, wiedząc, że masa atomowa tego pierwiastka wynosi 6,94u oraz ze pierwszego jego izotop zawiera w jadre atomowym 3 neutony, a drugi izotop 4 neutony.

2.5.5. Oblicz zawartość procentową dwóch izotopów bromu, widząc, że jego masa atomowa wynosi 79,9u oraz że jeden z izotopów bromu ma w jądrze 44, a drugi 46 neutronów.

2.5.6. Miedź skalda się z dwóch izotopów: 63Cu i 65Cu. Lżejszego w przyrodzie jest 80% oblicz średnią masę miedzi.

2.5.7. Ile rodzajów cząsteczek powstanie w reakcji jednowartościowego pierwiastka A stanowiącego mieszaninę dwóch izotopów (A-1 10% i A-2 90%) z jednowartościowym pierwiastkiem B stanowiącym również mieszaninę dwóch izotopów (B-1 30% i B-2 70%)? Oblicz, jaki procent stanowi każdy rodzaj cząsteczek w produkcie reakcji.

2.5.8. Woda w przyrodzie zawiera obok cząsteczek H₂O, oraz pewna niewielka ilość cząsteczek D₂O. Średnio stosunek ilości izotopów D do H wynosi 1:5500. Obliczyć ile gramów wody ciężkiej znajduje się w 1 m³ wody naturalnej.

2.5.9. Wyjaśnij niedobór masy, energię wiązania. Atom deuteru składa się z 1 protonu, 1 neutronu, 1 elektronu. Oblicz niedobór masy.

2.5.10. Oblicz skład procentowy dwóch występujących w przyrodzie izotopów azotu, widząc, że średnia masa atomowa tego pierwiastka wynosi 14,0067u, a występujący w przyrodzie azot jest mieszaniną azotu o liczbie masowej 14 i liczbie masowej 15.
3. Stechiometria

3.1. Obliczanie wzoru związku na podstawie składu ilościowego

3.1.1.
Obliczyć zawartość procentową siarki w związkach SO$_2$, SO$_3$

3.1.2.
Obliczyć zawartość procentową węgla w węglaniu wapnia (CaCO$_3$).

3.1.3.
Obliczyć skład procentowy siarczku miedzi(I) (Cu$_2$S).

3.1.4.
Nie wykonując obliczeń określić, który z następujących związków zawiera najwyższy procent siarki: Na$_2$S$_2$O$_3$, Na$_2$S$_2$O$_7$, Na$_2$S$_2$O$_8$?

3.1.5.
Obliczyć skład procentowy tlenu siarki, w którym stosunek wagowy siarki do tlenu wynosi 2:3.

3.1.6.
Nie wykonując obliczeń odpowiedzieć na pytanie: czy chlorek sodu zawiera taki sam procent chloru, jak chlorek potasu?

3.1.7.
Ile procent P$_2$O$_5$ znajduje się w fosforanie(V) wapnia Ca$_3$(PO$_4$)$_2$?

3.1.8.
Tlenek pewnego czterowartościowego pierwiastka zawiera 13,4% tlenu. Jaki to pierwiastek?

3.1.9.
W celu ustalenia wzoru węglku glinu przeprowadzono odpowiednie doświadczenie i stwierdzono, że w związku tym stosunek liczby atomów glinu do liczby atomów węgla jest równy 1:0,75. Obliczyć wzór elementarny.

3.1.10.
W związku chemicznym C$_x$H$_y$O$_z$ stosunek x:y wynosi 3:5, a stosunek y:z wynosi 2:1. Obliczyć wzór elementarny.

3.1.11.
Obliczyć wzór najprostszy (empiryczny) związku zawierającego 59% sodu i 41% siarki.

3.1.12.
Stosunek wagowy żelaza do siarki w pewnym związku wynosi 7:8. Podać wzór empiryczny.

3.1.13.
Obliczyć wartościowość siarki w tlenku, wiedząc, że 1g tlenku zawiera 0,4g siarki

3.1.14.
Ustalić wzór rzeczywisty związku potasu z tlenem, zawierającego 71% potasu, jeżeli masa cząsteczkowa tego związku wynosi 110u.

3.1.15.
Ustalić wzór rzeczywisty tlenku azotu o masie cząsteczkowej 92u, zawierającego 30,5% azotu.

3.1.16.
Ustalić wzór rzeczywisty tlenku azotu zawierającego 46,7% azotu, wiedząc, że gęstość tego gazu w temperaturze 293K pod normalnym ciśnieniem wynosi 1,25g/dm3.

http://www.chemia.sos.pl
3.1.17. Ustalić wzór rzeczywisty glukozy, wiedząc, że stosunek wagowy pierwiastków wynosi C:H:O = 6:1:8, a masa jednego mola glukozy wynosi 180g.

3.1.18. Siarczek pewnego jednowartościowego metalu zawiera 20% siarki. Jaki to metal?

3.1.19. Trójpierwiastkowy związek o masie mola 147g zawiera 49% węgla i 2,7% wodoru. Obliczyć wzór sumaryczny.

3.1.20. Fosforan(V) pewnego metalu ma masę cząsteczkową 212u i zawiera 30,2% tlenu. Jaki to metal?

3.1.21. Obliczyć procent wody hydracyjnej w CuSO₄·5H₂O.

3.1.22. Ustalić wzórhydratu siarczanu(VI) sodu, jeżeli zawiera on 47% wody.

3.1.23. Ustalić wzór chemiczny hydratu chlorku wapnia zawierającego 27,2% wapnia.

3.1.24. Sól (NH₄)₂(SO₄)₂·6H₂O zawiera 14,3% metalu M. Jaki to metal?

3.1.25. Dwuujemny jon S₅O₇²⁻ zawiera 57,1% siarki. Ustal wzór empiryczny jonu.

3.1.26. Oblicz stosunek liczby kationów do liczby anionów w 2 molowym roztworze Cr₂(SO₄)₃. Czy stosunek ten ulegnie zmianie po 3-krotnym rozcieńczeniu roztworu?

3.1.27. Dwie sole potasowe pewnych kwasów tlenowych zawierają odpowiednio 24,7% i 39,6% potasu. Obie reszty kwasowe mają identyczny wzór sumaryczny, różnią się jednak wartościowością. Jakie to sole?

3.1.28. W ilu gramach tlenku złota Au₂O₃, znajdują się 3 gramy złota.

3.1.30. Wyprowadź wzór sumaryczny węglowodoru nasyconego wiedząc ze %C=80% a gęstość węglowodoru w warunkach normalnych wynosi 1,339 g/dm³. Narysuj wzór strukturalny tego związku.

3.1.31. Gęstość gazowego fluorowodoru względem wodoru jest równa 20,0. Podaj rzeczywisty wzór sumaryczny tego związku.

3.1.32. Stwierdzono że w 25,0g siarczku pewnego czterowartościowego pierwiastka znajduje się 5,9g siarki. Jaki pierwiastek tworzy omawiany siarczek?

3.1.33. Ile g cynku znajduje się w 1kg tlenku cynku ZnO

3.1.34. Uwodniony siarczan magnezu zawiera 51,17% wody krystalizacyjnej. Obliczyć liczbę cząsteczek wody krystalizacyjnej przypadającej na 1 cząsteczkę siarczanu magnezu.
3.1-35. Napisz wzór i nazwę tlenku o masie cząsteczkowej 198 u, zawierającego atomy pierwiastka trójwartościowego.

3.1-36. Ustal wzór związku chemicznego, którego cząsteczka zawiera 2 atomy pierwiastka o łącznej masie cząsteczkowej 110 u i 7 atomów drugiego pierwiastka o łącznej masie cząsteczkowej 112 u. Podaj nazwę tego związku.

3.1-37. Ustal wzór sumaryczny węglowodoru, który w warunkach normalnych jest gazem o gęstości 1,34 g/dm³ i zawiera 80% węgla.

3.1-38. Obliczyć stosunek wagowy pierwiastków w związkach: a) CO₂, b) Fe₂S₃, c) C₆H₁₂O₆.

3.1-39. Siarczan(IV) (siarczyn) sodu jest związkiem sodu, siarki i tlenu. Podczas rozkładu 126 g tego związku otrzymano 62 g tlenku sodu i 64 g dwutlenku siarki. Obliczyć stosunek wagowy sodu do siarki i tlenu w siarczanie(IV) sodu wiedząc, że w tlenku sodu stosunek wagowy sodu do tlenu wynosi 23:8, a w dwutlenku siarki stosunek wagowy siarki do tlenu wynosi 1:1.

3.1-40. Jaki jest wzór rzeczywisty związku zawierającego 29,1% sodu; 40,5% siarki i 39,4% tlenu wiedząc, że 0,7 molowy roztwór tego związku ma gęstość równą 1,11 g/cm³ a jego stężenie procentowe wynosi 10%?

3.1-41. Oblicz skład procentowy CuS. Czy taki sam procent masowy siarki zawiera Cu₂S?

3.1-42. Zawartość procentowa potasu i tlenu w pewnej soli, o masie molowej równej 122,5 g/mol, wynosi odpowiednio: 31,84% i 39,18%. Resztę stanowi niemetal X. Stosunek molowy potasu do niemetalu X wynosi 1:1. Podaj wzór oraz nazwę tej soli.

3.1-43. Ustal wzór rzeczywisty chlorku o masie cząsteczkowej 167 u, wiedząc że zawiera on 42,5% chloru.

3.1-44. Ustal wzór sumaryczny cukru o masie cząsteczkowej 180 u, zawierającego 40% węgla i 66,7% wodoru.

3.1-45. Trójwzrośniowy pierwiastek tworzy siarczek o masie molowej około 1,5 raza większej od masy molowej tlenku jaki ten pierwiastek tworzy. Znalóż jaki to pierwiastek.

3.1-46. Zawartość pewnego trójwartościowego metalu w jego siarczanie(VI) wynosi 27,9%. Podać masę atomową i nazwę tego metalu.

3.1-48. W pewnej temperaturze i pod pewnym ciśnieniem 0,506 dm³ gazu zawierającego 90,28% krzemu i 9,72% wodoru ma masę równą w przybliżeniu masie 1,12 dm³ N₂. Dokonaj obliczenia i podaj wzór cząsteczki tego gazu.

3.1-49. Ustal stosunek masowy składników i skład procentowy a) nonanu b) pentenu c) butynu

3.1-50. Oblicz zawartość procentową pierwiastków w wapieniu (węglanie wapnia).

http://www.chemia.sos.pl
3.1.51.
Jaki tlenek dwuwartościowego metalu o masie cząsteczkowej 217u znajduje się w butelce na której przyklejono piktogram? Jak należy postępować z tą substancją?

3.1.52.
W tlenku miedzi(I) stosunek masowy miedzi do tlenu wynosi 8/1 a w tlenku miedzi(II) wynosi 4/1. Z 10 g miedzi w reakcji utleniania powstało 11,25 g tlenku. Ustal, który z tlenków powstał z reakcji.

3.2. Obliczanie wzoru związku na podstawie równania reakcji

3.2.1.
Całkowite spalenie pewnej ilości węglowodoru dało 0,66g CO\textsubscript{2} oraz 0,36g H\textsubscript{2}O. Obliczyć wzór empiryczny węglowodoru.

3.2.2.
Ze spalenia 4g węglowodoru o masie mola 40g otrzymano 13,2g dwutlenku węgla. Obliczyć wzór rzeczywisty.

3.2.3.
Podczas utleniania pewnego siarczku miedzi otrzymano 4g CuO i 1,6g SO\textsubscript{2}. Ustalić wzór empiryczny siarczku miedzi.

3.2.4.
Redukując 0,25 mola pewnego tlenku żelaza zużyto 12g węgla. Otrzymano 42g żelaza i tlenek węgla(II). Ustalić wzór sumaryczny redukowanego tlenku.

3.2.5.
Do zredukowania 1 mola tlenku uranu o masie cząsteczkowej 842u zużyto 179,2dm3 wodoru (warunki normalne). Produktem redukcji były: uran i woda. Ustalić wzór sumaryczny redukowanego tlenku.

3.2.6.
5g uwodnionego siarczanu(VI) glinu rozpuszczono w wodzie i cały zawarty w nim glin wytracono ilościowo w postaci Al\textsubscript{2}AsO\textsubscript{4} o masie 2,5g. Obliczyć liczbę moli wody hydratacyjnej przypadającej na 1 mol siarczanu(VI) glinu.

3.2.7.
Z iloma cząsteczkami wody krystalizuje MgHPO\textsubscript{4} jeżeli hydrat zawiera 40,8% P\textsubscript{2}O\textsubscript{5}?

3.2.8.
Spalanie związku zawierającego C, H, S dalo 2,64g CO\textsubscript{2} 2,16g H\textsubscript{2}O 3,84g SO\textsubscript{2}. Masa cząsteczkowa M\textsubscript{CxHyS}\textsubscript{z}=48u. Podaj pełny wzór tego związku.

3.2.9.
W wyniku rozkładu termicznego próbki o masie 1,3217g węglanu(IV) pewnego metalu otrzymano 0,6318 g tlenku tego metalu. Wiedząc, że w trakcie procesu rozkładu metal nie zmienia stopnia utleniania, ustali wzór tego związku.

3.2.10.
Ustalono, że badany związek chemiczny zbudowany jest z atomów żelaza i tlenu. W wyniku redukcji w wodorze 16,0g tego związku otrzymano 5,40g H\textsubscript{2}O. Jaki jest wzór empiryczny tego związku?

3.2.11.
Pierwiastek chemiczny należy do 2 grupy układu okresowego połączył się z tlenem w stosunku wagowym 3:2. W wyniku reakcji powstało 400 gramów tlenku.

a) oblicz masę pierwiastka, który połączył się z tlenem.
b) oblicz objętość tlenu niezbędnego w tej reakcji, wiedząc, że jego gęstość wynosi 1,429 g/dm3.
c) ustal wzór sumaryczny tego tlenku.
3.2-12.
Oblicz wartościowość uranu w soli powstającej podczas reakcji 0,1g uranu z kwasem, jeżeli wydzieliło się 18,8cm³ wodoru (warunki normalne)

3.2-13.
Tlenek pewnego trójwartościowego pierwiastka reaguje z wodą, dając jednozasadowy kwas o masie cząsteczkowej 47u. Podaj wzór tego tlenku i ułóż jego równanie reakcji z wodą.

3.2-14.
Zmieszano 5g miedzi z 2g siarki i przeprowadzono reakcję syntezy siarczku miedzi(II). Oblicz skład masowy powstałej mieszanki.

3.2-15.
Zredukowano wodorem 32g pewnego tlenku żelaza Fe₃O₄ i otrzymano żelazo oraz 10,8g wody. Ustal wzór sumaryczny zredukowanego tlenku.

3.2-16.
Do spalenia 1mola węglowodoru o masie cząsteczkowej 70u zużyto 168dm³ tlenu (warunki normalne). Produktami spalenia były CO₂ i H₂O. Ustal wzór sumaryczny węglowodoru.

3.2-17.
Z 5g pewnego związku chloru otrzymano 12,3g chlorku srebra. Ile procent chloru zawierał wyjściowy związek?

3.2-18.
Po ogrzaniu 1,5 g pewnego związku wydzieliło się 0,6765 g tlenu. Pozostałość stanowi chlorek sodu. Podaj wzór związku.

3.2-19.
Próbkę chlorku żelaza o masie 0,325g rozpuszczono w wodzie, a następnie wytrącono jony chlorkowe azotanem(V) srebra. Ustal wzór chlorku żelaza, jeśli masa otrzymanego osadu wynosiła 0,86g.

http://www.chemia.sos.pl
4. Stechiometria reakcji

4.1. Obliczenia na podstawie równania reakcji

Rozwiązując większość zadań z chemii powinniśmy zacząć, o ile to możliwe, od napisania równania reakcji chemicznej. Zadania ze stechiometrii reakcji, bez poprawnego zapisania i uzgodnienia równania reakcji chemicznej nie da się rozwiązać. Dalszym kluczowym etapem jest przeczytanie tego równania reakcji. Na tym etapie pomocne są współczynniki stechiometryczne oraz znajomość stanu skupienia reagentów i produktów reakcji. Na przykład reakcję miedzi z kwasem siarkowym(VI) możemy przeczytać w następujący sposób:

Cu + 2H\(_2\)SO\(_4\) → CuSO\(_4\) + SO\(_2\) + 2H\(_2\)O

a) 1 atom miedzi reaguje z 2 cząsteczkami kwasu siarkowego(VI) tworząc 1 cząsteczkę siarczanu(VI) miedzi(II), cząsteczkę tlenku siarki(IV), oraz 2 cząsteczki wody.

Z 1 atomem lub z jedną cząsteczką raczej nigdy nie mamy do czynienia, dogodniejsze może być przeczytanie tego równania w inny sposób.

b) 1 mol miedzi reaguje z 2 molami kwasu siarkowego(VI) tworząc 1 mol siarczanu(VI) miedzi(II), mol tlenku siarki(IV), oraz 2 mole wody.

Mol każdej substancji posiada określoną masę, możemy równanie reakcji przeczytać z wykorzystaniem mas molowych:

c) 63,55g miedzi reaguje ze 196g kwasu siarkowego(VI) dając 159,55g siarczanu(VI) miedzi(II), 64g tlenku siarki(IV), oraz 36g wody.

Tlenek siarki(IV) jest gazem. Mol każdego gazu w warunkach normalnych zajmuje objętość 22,4dm\(^3\), czyli:

d) 63,55g miedzi reaguje ze 196g kwasu siarkowego(VI) dając 159,55g siarczanu(VI) miedzi(II), 22,4dm\(^3\) tlenku siarki(IV), oraz 36g wody.

W zależności od potrzeb (treści zadania, pytania w zadaniu) podane wyżej sposoby możemy mieszać ze sobą:

e) 1 mol miedzi reaguje z 196g kwasu siarkowego(VI) tworząc 1 mol siarczanu(VI) miedzi(II), 22,4dm\(^3\) tlenku siarki(IV), oraz 36g (36cm\(^3\)) wody.

Podczas rozwiązywania zadania nie musimy czytać całego równania reakcji. Często wystarczy przeczytać je z użyciem reagentów/produktów, które są dane w treści zadania i dla których szukamy odpowiedzi.

4.1.1.
Z rozkładu pewnej próbki tlenku rtęci(II) otrzymano 20,1g rtęci i 1,6g tlenu. Ile rtęci i ile tlenu otrzymano by z rozkładu próbki o masie 65,1g?

4.1.2.
Miedź reaguje z siarką w stosunku wagowym 4:1. Obliczyć, ile gramów miedzi i ile gramów siarki użyto do reakcji, jeżeli otrzymano 80 g siarczku miedzi(I).

4.1.3.
Mieszzaninę żelaza i siarki w stosunku wagowym 7:4 ogrzano i otrzymano 66g siarczku żelaza(II). Obliczyć, ile gramów żelaza i ile gramów siarki zawierała mieszanina.

4.1.4.
W eudiometrze nastąpił wybuch mieszaniny wodoru i tlenu, zmieszanych w stosunku objętościowym 2:1. Po wybuchu eudiometr zawierał tylko parę wodną o masie 0,036g. Obliczyć, ile gramów wodoru i ile gramów tlenu znajdowało się w eudiometrze przed wybuchem. Gęstość wodoru wynosi 0,089g/dm\(^3\), a tlenu 1,43g/dm\(^3\).

4.1.5.
Z rozkładu 15,8g wodorowęglanu amonu otrzymano 3,6g pary wodnej i 4,48dm\(^3\) dwutlenku węgla. Trzecim produktem rozkładu jest amoniak. Obliczyć objętość otrzymanego amoniaku, jeżeli jego gęstość w temperaturze pomiaru wynosi 0,76g/dm\(^3\), a gęstość dwutlenku węgla wynosi 1,96g/dm\(^3\).

4.1.6.
Podczas rozkładu 30g tlenku rtęci(II) powstało 27,8g rtęci oraz tlenu. Obliczyć, ile powstało tlenu.

4.1.7.
Podczas ogrzewania 2,4g magnezu powstały 3g tlenku magnezu. Obliczyć, ile gramów tlenu przyłączył magnez.

4.1.8.
Reakcja przebiega według schematu: A → B + C + D
Z 80g substancji A otrzymano 20g substancji C. Stosunek wagowy B do D wynosił 1:3. Ile gramów substancji B i D otrzymano?
Stehiometria reakcji

4.1-9.
Próbkę wody rozłożono na tlen i wodór. Otrzymano 4 dm³ wodoru i 2 dm³ tlenu zmierzone w warunkach normalnych. Obliczyć masę próbki wody, jeżeli gęstość wodoru wynosi 0,089g/dm³, a tlenu 1,43g/dm³ (w warunkach normalnych).

4.1-10.
Ile moli miedzi potrzeba do otrzymania 7 moli siarczku miedzi(I) (Cu₂S)?

4.1-11.
Reakcja przebiega według równania: 4NH₃ + 5O₂ → 4NO + 6H₂O
Obliczyć, ile moli tlenu cząsteczkowego potrzeba do utlenienia 0,6 mola amoniaku (NH₃).

4.1-12.
Reakcja przebiega według równania: 2Bi₂O₃ + 3C → 4Bi + 3CO₂
Obliczyć, ile moli bizmutu powstało w reakcji, jeżeli równocześnie otrzymano 7,5mola dwutlenku węgla.

Czy 0,25 mola wodoru wystarczy do otrzymania 0,2 mola amoniaku?

4.1-14.
Ile gramów pary wodnej powstaje podczas redukcji 4g tlenku miedzi(II) wodorem?

Ile gramów wodorotlenku sodu potrzeba do zobojętnienia 12g kwasu fosforowego(V)?

4.1-16.
Ile gramów tlenu potrzeba do utlenienia 0,25 mola miedzi, jeżeli powstaje tlenek miedzi(ll)?

4.1-17.
Ile gramów dwutlenku siarki (SO₂) powstanie w reakcji siarki z 4 molami tlenu cząsteczkowego?

4.1-18.
Reakcja przebiega według równania: Al₂O₃ + 3H₂ → 2Al + 3H₂O .
Obliczyć, ile gramów glinu powstało w reakcji, jeżeli równocześnie otrzymano 0,6 mola wody.

4.1-19.
Azotan(V) amonu (NH₄NO₃) ogrzany do temperatury 440 K rozkłada się na tlenu azotu(I) (N₂O) i parę wodną. Ile moli N₂O można otrzymać z 8 g azotanu(V) amonu?

4.1-20.
Reakcja przebiega według schematu: AB + C → AC + B .
Stosunek wagowy A do B w związku AB wynosi 1:3, a stosunek wagowy A do C w związku AC wynosi 1:2. Ile gramów związku AC można otrzymać z 24g AB?

4.1-21.
Czy 10g glinu wystarczy do otrzymania 25g siarczku glinu (Al₂S₃)?

4.1-22.
Na ile gramów magnezu należy działać kwasem, aby otrzymać tyle wodoru, ile powstaje w reakcji 3g glinu z kwasem?

4.1-23.
Jaką objętość zajmą w warunkach normalnych produkty reakcji przebiegającej według równania: N₂O₃ → NO₂ + NO, jeżeli nastąpi rozkład 3moli N₂O₃?

Z mieszaniny gazowego tlenu i wodoru o stosunku objętościowym 1:2 otrzymano p cm³ wody ciekłej. Jaka była objętość początkowa gazów, jeżeli znajdowały się one w warunkach normalnych?

4.1-27.
Ile moli trójtlenku siarki (SO$_3$) można otrzymać z 10 dm3 (warunki normalne) dwutlenku siarki (SO$_2$)?

Ile dm3 tlenu (warunki normalne) otrzymamy z rozkładu 4,34g tlenku rtęci(II) (HgO)?

4.1-29.
Pewną ilość tlenu przeprowadzono w ozon (O$_3$) i stwierdzono, że objętość zmniejszyła się o 10cm3 w przeliczeniu na warunki normalne. Ile miligramów tlenu użyto do doświadczenia?

4.1-30.
Ile gramów nadlenu wodoru musi ulec rozkładowi, aby powstało 5dm3 tlenu odmierzonego w warunkach normalnych? Uwaga: Nadlenu wodoru rozkłada się na wodę i tlen cząsteczkowy

Zmixowano 4dm3 wodoru i 3dm3 chloru, a następnie zainicjowano reakcję. Obliczyć objętość gazów po reakcji.

4.1-32.
Do roztworu zawierającego 6g zasady sodowej dodano roztwór zawierający 10g kwasu azotowego(V). Jaki odczyn miał otrzymany roztwór?

4.1-33.
Obliczyć, ile moli amoniaku powstałoby, gdyby użyć do syntezy takiej objętości wodoru, w której znajduje się 12 10^{24} cząsteczek i takiej objętości azotu, w której znajduje się 6 10^{24} cząsteczek.

4.1-34.
Po eksplozji 70cm3 mieszaniny wodoru z tlenem stwierdzono, że w otrzymanej parze wodnej znajduje się domieszka tlenu. Mieszzaninę rozdzielono i otrzymano 10cm3 tlenu, zmierzonych w tych samych i warunkach ciśnienia i temperatury, co objętość gazów przed reakcją. Obliczyć, jaki procent objętościowy tlenu zawierała mieszanina po reakcji.

4.1-35.
W których przypadkach cały tlenek węgla przereaguje z tlenem:
 a) masy gazów są równe,
 b) objętości gazów są równe,
 c) liczby moli są równe?

4.1-36.
Na 27,3g siarczku sodu podziałano kwasem siarkowym. W wyniku reakcji wydzieliła się pewna liczba: moli siarki (X), moli siarkowodoru(Y), moli dwutlenku siarki (Z). X moli wydzielonej siarki po odsączeniu, przemyciu i wysuszeniu poddano spaleniu i otrzymano 3,92dm3 SO$_2$ w warunkach normalnych.
 a) Obliczyć liczbę moli (X) wydzielonej siarki oraz procent zużytego w tej reakcji Na$_2$S.
 b) Obliczyć liczbę moli (Y) wydzielonego siarkowodoru oraz procent zużytego na tę reakcję Na$_2$S.
 c) Obliczyć liczbę moli (Z) wydzielonego SO$_2$

4.1-37.
0,560 g mieszaniny NaBr i KBr rozpuszczono w wodzie. Nadmiarem roztworu AgNO$_3$ strącono osad AgBr, który po dokonaniu wszystkich czynności analitycznych osiągnął stałą masę równą 0,970 g. Obliczyć skład procentowy mieszaniny.

4.1-38.
W 350 cm3 roztworu stwierdzono obecność 168 mg NaHCO$_3$.
Napisać równanie reakcji całkowitego rozkładu wodorowęglanu sodu przez kwas siarkowy.
Obliczyć, ile cm3 0,05-molowego roztworu H$_2$SO$_4$ trzeba zużyć, aby rozłożyć zawarty w roztworze wodorowęglan.
Obliczyć, ile moli siarczanu sodu powstało w wyniku tej reakcji.
4.1.39. W wyniku reakcji pewnego metalu ze stężonym kwasem siarkowym(VI) wydzieliło się 0,112 dm3 (warunki normalne) bezbarwnego gazu o duszącym zapachu, oraz powstało 1,56g soli, w której metal ten jest jednowartościowy. Podaj wzór i nazwę otrzymanej soli.

4.1.40. Do 25 cm3 roztworu kwasu siarkowego(VI) o stężeniu 1 mol dm$^{-3}$ wrzucono 0,2 g wapnia. Po zakończeniu reakcji odparowano wodę. Oblicz masę wykryztałizowanego CaSO$_4$.2H$_2$O.

4.1.41. Ile dm3 chlorowodoru (warunki normalne) potrzeba do zobojętnienia 50g 1% roztworu wodorotlenku wapnia?

4.1.42. Ile dm3 tlenku azotu(II) (warunki normalne) otrzymamy w wyniku spalania 17g amoniaku. Amoniak spalany jest według równania reakcji: 4NH$_3$ +5O$_2$ → 4NO+6H$_2$O

4.1.43. Oblicz, kiedy powstaje więcej pary wodnej:
 a) podczas łączenia się tlenu z 1g wodoru
 b) podczas reakcji tlenku miedzi(II) z 1g wodoru.

4.1.44. Ile należy użyć rtęci do przygotowania 100g tlenku rtęci(II).

4.1.45. Spalono w tlenie 20g metalicznego magnezu. Ile gramów tlenku magnезiu powstało w tej reakcji.

4.1.46. Ile bromu wydzieli się przy przepuszczeniu gazowego chloru przez roztwór zawierający 17,5g bromku poatasu. Ile należy użyć chloru jeżeli jego straty wynoszą 8%?

4.1.47. 2,25g metalicznego sodu roztworzono w 75g wody. Obliczyć procentową zawartość wodorotlenku sodu w powstałym roztworze.

4.1.48. Ile gramów metalicznego sodu roztworzono w wodzie, jeżeli powstało 49g 10% roztworu wodorotlenku sodu? Ile gramów wodoru wydzieliło się w tej reakcji?

4.1.49. Do reakcji spalania glinu w tlenie 4Al+3O$_2$ → 2Al$_2$O$_3$ użyto 0,6 mola tlenu. Ile gramów tlenku glinu powstało?

4.1.50. Mieszając chemicznie czystych soli - chłorku potasu i azotanu(V) potasu rozpuszczone w wodzie a następnie strącono chłorki w postaci osadu chłorku srebra. Oblicz zawartość azotu w mieszaninie, jeżeli próbka do analizy miała masę 0,2732g a otrzymany osad chłorku srebra ważył 0,2231g.

4.1.51. Do 94cm3 mieszaniny wodoru i tlenku węgla(II) dodano 100cm3 tlenu. Objętość mieszaniny po spaleniu i całkowitym wykropleniu pary wodnej wynosiła 136cm3. Oblicz objętościowy skład procentowy mieszaniny.

4.1.52. Ile dm3 tlenku azotu(II) (warunki normalne) otrzymamy w wyniku spalania 17g amoniaku. Amoniak spalany jest według równania reakcji: 4NH$_3$ +5O$_2$ → 4NO+6H$_2$O

4.1.53. Oblicz masę Cynku roztworzonego w nadmiarze kwasu siarkowym(VI), jeżeli otrzymano 0,500 dm3 2,00% roztworu tetraoksosiarczanu cynku (siarczanu(VI) cynku) o gęstości 1,03g/cm3.

4.1.54. Ile możemy otrzymać maksymalnie kilogramów amoniaku, jeśli użyjemy do reakcji 28,0kg azotu i 28,0kg wodoru?

http://www.chemia.sos.pl
4.1-55. Ile możemy otrzymać maksymalnie kilogramów tlenku siarki(IV) jeśli użyjemy do reakcji 64,0kg siarki i 64m³ tlenu (w przeliczeniu na warunki normalne)?

4.1-56. Ile otrzymamy m³ ditlenku węgla (w przeliczeniu na warunki normalne) jeśli spalimy 12,0kg czystego węgla w 60,0kg tlenu?

4.1-57. Oblicz ile moli roztworu kwasu bromowodorowego potrzeba do złożenia roztworu 200g 5% wodorotlenku potasu.

4.1-58. Oblicz objętość, CO₂ i NH₃ w warunkach normalnych potrzebną do otrzymania 1 tony mocznika. Wymień przemysłowe zastosowania tego związku.

4.1-59. Chlor można otrzymać działaniem kwasu siarkowego i dwutlenku manganu na sól kuchenną. Reakcja przebiega według równania:

2NaCl + MnO₂ + 3H₂SO₄ = 2NaHSO₄ + MnSO₄ + Cl₂ + 2 H₂O

Ile litrów chloru można otrzymać ze 100g soli kuchennej.

4.1-60. Dokonaj interpretacji ilościowej (atomy, cząsteczki, mole, masa molowa) następującego równania reakcji:

3P+5HNO₃+2H₂O → 3H₃PO₄+5NO

4.1-61. Obliczyć zawartość procentową składników mieszaniny jeśli z 0,6249 g mieszaniny KCl i NaCl otrzymano 1,4350g AgCl.

4.1-62. 25 g tlenku miedzi(I) Cu₂O redukowano w strumieniu wodoru. Po przerwaniu reakcji masa wytworzonej Cu i nie przereagowanej części tlenku wynosiła 24,5 g. Ile pary wodnej powstało?

4.1-63. W pracowni przechowywano pojemnik zawierający 100g NaOH. Po dłuższym przechowywaniu zważono zawartość pojemnika i okazało się, że masa zawartości wzrosła do 103g. Przyczyną wzrostu masy był pochłonięty dwutlenek węgla, który tworzy z wodorotlenkiem sodu sól - węglan sodu. Oblicz, jaka objętość dwutlenku węgla w warunkach normalnych została pochłonięta przez wodorotlenek.

4.1-64. Oblicz, ile gramów siarczku żelaza(III) otrzymamy, jeżeli użycymy do syntezy 15g żelaza i 9,6g siarki.

4.1-66. Oblicz, ile gramów tlenku wapnia powstanie w wyniku rozkładu 10 gram węglanu wapnia

4.1-67. Ile gramów magnezu można roztworzyć w wodzie bromowej, zawierającej 8 g bromu?

4.1-68. Oblicz, jaką objętość w warunkach normalnych zajmie chlor wydzielony w reakcji MnO₂ ze stężonym roztworem kwasu solnego zawierającym 14,6g HCl.

4.1-69. Oblicz, ile moli wodorotlenku sodu trzeba użyć do złożenia:

a) 2 moli HCl b)1 mola H₂SO₄ c)1,5 mola H₃PO₄.

4.1-70. Oblicz, ile gramów siarki trzeba wziąć do reakcji syntezy z miedzią, aby otrzymać 40g siarczku miedzi(I)
4.1-71. Ile gramów wodoru powstaje w reakcji 4g cynku z kwasem solnym?

4.1-72. Do 700g 15% roztworu azotanu(V) srebra wprowadzono 30g cynku. Oblicz ile gramów srebra wydzieli się po zakończeniu reakcji wymiany.

4.1-73. Magnez reaguje z kwasem octowym, a produktami reakcji są octan magnezu i wódór. Oblicz a) objętość wodoru (warunki normalne), który powstanie, jeśli z kwasem octowym przereaguje 4,8 g magnezu
b)masę octanu magnezu, który można otrzymać w reakcji 4,8 g magnezu z kwasem octowym

4.1-74. Masa sodu pozostawionego na powierzchni zmieniła się po pewnym czasie z 1,84g na 2,48g. Przy założeniu, że w reakcji z sodem wszedł tylko tlen, oblicz, jaka objętość tego gazu połączyła się z sodem

4.1-75. Do zlewki zawierającej wodę wapniową wprowadzono 25cm³ dwutlenku węgla. Oblicz, o ile wzrośnie masa zawartości tej zlewki po zajściu reakcji między obiema substancjami

4.1-76. Do roztworu siarczanu(VI) miedzi zanurzono płytkę żelazna o masie 40 g. Po zakończeniu reakcji płytkę osuszył oblicz, ile gramów miedzi wydzieliło się w tej reakcji?

4.1-77. Oblicz, ile gramów tlenu potrzeba do utlenienia 7g węgla do dwutlenku węgla.

4.1-78. Do 100cm³ kwasu solnego o stężeniu 1 mol/dm³ wrzucono próbkę mosiądzu o masie 3,25g. Po zakończeniu reakcji objętość wydzielonego wodoru (odniesiona do warunków normalnych) była równa 448cm³. Oblicz procent zawartości miedzi i cynku w próbce mosiądzu.

4.1-79. Oblicz, ile cm³ 0,1-molowego roztworu AgNO₃ potrzeba do otrzymania 14,35g AgCI w reakcji z nadmiarem NaCl.

4.1-80. Do 50 cm³ 15% kwasu solnego o gęstości 1,07 g/cm³ dodano nadmiar glinu. Oblicz, ile moli cząsteczek wodoru wydzieli się w czasie tej reakcji.

4.1-81. W czystym tlenie amoniak spala się wg schematu: NH₃(g) + O₂(g) → N₂(g) + H₂O(l). Odmierzono 13 dm³ mieszaniny amoniaku i tlenu (w warunkach normalnych). W mieszaninie gazów po reakcji nie stwierdzono obecności tlenu, a po przepuszczeniu jej przez płuczkę z wodą objętość gazów zmalała do 3 dm³. Oblicz gęstość (w warunkach normalnych) mieszaniny gazów przed reakcją.

4.1-82. W celu ilościowego oznaczenia tlenu rozpuszczonego w wodzie pobrano do analizy 360 cm³, do której dodano w nadmiarze: MnSO₄, KJ oraz KOH. Wytrącony w tych warunkach osad MnO₂, po zakwaszeniu próbki H₂SO₄, utlenił jony jodkowe do stechiometrycznej ilości jodu. Do zmierczkowania wydzielonego jodu zużyto 10 cm³ 0,025 molowego roztworu Na₂S₂O₃. Oblicz, ile mg tlenu znajdowało się w 1 dm³ badanej wody.

4.1-83. Porcję cynku poddano działaniu roztworu kwasu siarkowego (VI) o średnim stężeniu. W trakcie reakcji wydzieliło się 5dm³ bezwonnego gazu i 4dm³ gazu o ostrym nieprzyjemnym zapachu. Oblicz masę roztworzonego cynku.

4.1-84. W wyniku zmieszania wodnego roztworu chromianu(VI) potasu z roztworem azotanu(V) srebra wytrąca się czerwonobrunatny osad. Oblicz masę tego osadu, jeżeli zmieszano 150cm³ 0,5 molowego roztworu chromianu (VI) potasu i 200g 10% roztworu azotanu(V) srebra.

http://www.chemia.sos.pl
4.1-85.
W celu identyfikacji pewnego metalu próbkę tego metalu o masie 1g roztworzono w nadmiarze rozcieńczonego roztworu kwasu siarkowego(VI), otrzymując 930cm³ wodoru (w warunkach normalnych). Ustal jaki to metal, wiedząc, że w swoich związkach jest on II wartościowy.

4.1-86.
Obliczyć objętość (w dm³) 0,619 M roztworu KOH jaką zużyto na całkowite zobojętnienie 0,239 dm³ 0,502 M roztworu HCl.

4.1-87.
Zawartość jonów PO₄³⁻ w badanej próbie oznaczono wagowo jako związek (NH₄)₃PO₄·12MoO₃. Oblicz zawartość procentową fosforu (P) w próbie, jeżeli z 0,5671 g próbki otrzymano 4,3081 g związku.

\[M(P) \cdot 31,0; M((NH₄)₃PO₄·12MoO₃) = 1876 \]

4.1-88.
Obliczyć objętość (w dm³) 0,521 M roztworu KOH jaką zużyto na całkowite zobojętnienie 0,367 dm³ 0,502 M roztworu HCl.

4.1-89.
Ile cm³ wodnego roztworu amoniaku (NH₃·H₂O) o stężeniu 10% i gęstości 0,96 g/cm³ należy użyć do całkowitego wytrącenia Fe(OH)₃ z roztworu zawierającego 3,11 g żelaza (jako jony Fe(III)).

\[M(Fe) = 55,85 ; M(NH₃) = 17,03 \]

4.1-90.
Do 200g 5% roztworu NaOH dodano 500cm³ 0,5 molowego roztworu kwasu solnego. Jaki jest odczyn otrzymanego roztworu. Odpowiedź uzasadnij odpowiednimi obliczeniami.

4.1-91.
Reakcji spalania poddano 18g węgla. W wyniku tej reakcji otrzymano 66g tlenku węgla(IV). Oblicz masę i objętość tlenu, który wszedł w reakcje z węglem. Gęstość tlenu 1,43g/dm³.

4.1-92.
Do 300 ml 0,5 molowego roztworu chlorku wapniowego dodano 25 g chlorku wapniowego, a następnie rozcieńczono wodą do 650 ml. Obliczyć stężenie molowe jonów chlorkowych w otrzymanym roztworze. Ile gramów AgNO₃ trzeba użyć do wytrącenia jonów chlorkowych z tego roztworu?

4.1-93.
Przepuszczono 1m³ powietrza (warunki normalne) przez roztwór Ba(OH)₂ i stwierdzono powstanie 2,64g węglanu baru. Zawartość tlenku węgla(IV) w przepuszczonym powietrzu, wyrażona w procentach objętościowych, jest w przybliżeniu równa.

4.1-94.
Oblicz jaką objętość tlenu w warunkach normalnych zużyje się do spalenia 92g glicerolu, wiedząc, że produktami reakcji są tlenek węgla(IV) i woda.

4.1-95.
Ile gramów glinu trzeba użyć do redukcji 54g tlenku żelaza(II), jeżeli reakcja przebiega wg równania:

\[2Al + 3FeO \rightarrow Al₂O₃ + 3Fe \]

4.1-96.
Oblicz ile dm³ gazowego chlorowodoru(o wzorze HCl) otrzymano w reakcji 35,5g chloru z 1g wodoru, jeśli wiadomo, że gęstość chlorowodoru w warunkach normalnych wynosi 0,00164g cm³.

4.1-97.
Zmieszano 7 moli cynku ze 100g siarki. W wyniku reakcji powstał ZnS. Zapisz równanie reakcji, która z substancji przereagowała całkowicie, a której użyto za dużo i o ile. Ile powstało moli siarczku cynku.

4.1-98.
Ile gramów siarczku magnezu (MgS) powstanie w reakcji 12g magnezu z siarką?

4.1-99.
Ile dm³ wodoru w warunkach normalnych powstanie w reakcji 6,5g cynku z kwasem siarkowym(VI)?
4.1.100.
10g stali zawierającej 98% wagowych Fe oraz 2% wagowych C rozpuszczono w kwasie siarkowym. Węgiel nie reagował z kwasem, żelazo utworzyło FeSO₄. Zapisz równanie opisanej reakcji chemicznej. Jaka ilość moli kwasu była potrzebna do reakcji? Obliczyć masę wydzielonego wodoru oraz jego objętość w temperaturze 30°C i pod ciśnieniem 1,1at.

4.1.101.
Masa sodu pozostawionego na powietrzu zmieniła się po pewnym czasie z 1,2g na 1,95g. Zakładając że w reakcji z sodem wszedł tylko tlen, podaj jaka objętość tego gazu połączyła się sodem?

4.1.102.
W kolbie o pojemności 1dm³ w warunkach normalnych zebrane jest powietrze. Oblicz ile gram węgla można spalić całkowicie w tej objętości powietrza.

4.1.103.
Oblicz ile gramów siarczku żelaza (II) można otrzymać, jeżeli użyje się do reakcji 7g żelaza i 7g siarki.

4.2. Wydajność reakcji

4.2-1.
Jaką ilość wapienia poddano prażeniu, jeżeli wiadomo, że zawiera on 20% zanieczyszczeń, a ilość otrzymanego dwutlenku węgla mierzona w temperaturze T= 283 K pod ciśnieniem 1040 hPa wyniosła 20m³, natomiast wydajność procesu 80%.

4.2-2.
Oblicz jaki procent sacharozy uległ hydrolizie, skoro z 10,52 g tego disacharydu uzyskano mieszaninę, która w wyniku reakcji z tlenkiem srebra dała 8,64 g srebra.

4.2-3.
W strumieniu powietrza prażono 370kg rudy zawierającej 3% siarczku miedzi CuS, otrzymany w ten sposób tlenek miedzi poddano redukcji wodorem. Obliczyć masę otrzymanej metalicznej miedzi, jeśli wydajność całego procesu wynosiła 70%.

4.2-4.
Oblicz ile kg gipsu palonego można otrzymać z 10 kg gipsu krystalicznego zawierającego 90% czystego dwuwodnego siarczanu (VI) wapnia.

4.2-5.
W celu ustalenia zawartości siarki w węglu kamiennym, próbkę o masie 10g poddano całkowitemu spaleniu. Gazowe produkty spalania wprowadzono do 200cm³ 0,01 molowego roztworu nadmanganianu potasu, zakwaszonego kwasem siarkowym. Ilość moli KMnO₄ w roztworze zmniejszyła się o polowę. Oblicz procentową zawartość siarki w próbce węgła.

4.2-6.
Podczas wypalania jednej tony wapienia w wapienniku otrzymano 532kg wapna palonego CaO. Ile wynosi zawartość procentowa węglanu wapnia w tej skale wapiennej?

4.2-7.
Oblicz masę mieszaniny zawierającej 40% CuO (resztę stanowi krzemionka), potrzebną do przygotowania 500g CuSO₄·5H₂O

4.2-8.
Ile gramów chlorku metylu można otrzymać ze 100g metanolu, jeżeli wydajność reakcji wynosi 70%?

4.2-9.
Azotan (V) potasu, poddany ogrzewaniu, traci tlen i przechodzi w azotan (III) potasu. Próbkę azotanu (V) potasu umieszczono w otwartym naczyniu i ogrzewano do momentu, gdy masa stałej pozostałości wynosiła 88% początkowej masy próbki. Oblicz ile % azotanu (V) potasu uległo rozkładowi.
4.2.10.
Siarkowodór otrzymuje się w reakcji siarczanu żelaza z kwasem solnym zgodnie z równaniem chemicznym:
$$\text{FeS} + 2\text{HCl} \rightarrow \text{FeCl}_2 + \text{H}_2\text{S}$$
Ile gramów FeS należy użyć aby otrzymać 2 mole siarkowodoru jeżeli wydajność materiałowa reakcji wynosi 75%? Masa molowa FeS jest równa 88g/mol.

4.2.11.
Ile trzeba benzenu użyć do dwuetapowej syntetyz prowadzącej przez tolen do kwasu benzosowego w celu otrzymania 200kg kwasu benzosowego. Wydajność pierwszego etapu wynosi 70%, a drugiego 90%.

4.2.12.
Mieszanna azotu i tlenku azotu otrzymana w reakcji utleniania amoniku tlenem, miała średnią masę mola 28,7 g. Jaka część mola amoniku użytego do reakcji utleniła się do tlenku azotu?

4.2.13.
Ile gramów toluenu potrzeba do syntezy 30g p-nitrotoluenu gdy wydajność reakcji wynosi 60%.

4.2.14.
Ile ton kamienia wapiennego zawierającego 85% wagowych CaCO$_3$ należy użyć aby otrzymać 220kg CO$_2$ w wyniku rozkładu CaCO$_3$ (zapisz równanie reakcji rozkładu)!. Ile należy użyć tego kamienia gdyby wydajność reakcji rozkładu wynosiła 95%

4.2.15.
Oblicz wydajność reakcji syntetyz amoniku w pewnej temperaturze T, jeżeli z 50g azotu otrzymano 51g amoniku

4.3. Chemia organiczna

4.3.1.
Jednym ze sposobów oznaczania ilości glukozy jest metoda jodometryczna, której przebieg ilustruje równanie:
$$\text{C}_6\text{H}_12\text{O}_6 + \text{I}_2 + 2\text{KOH} \rightarrow \text{C}_6\text{H}_12\text{O}_7 + 2\text{KI} + \text{H}_2\text{O}.$$
Oblicz, ile gramów glukozy znajduje się w 600 g roztworu, jeżeli na zmiarkowanie próbki roztworu o masie 50 g zużyto 100 cm3 0,1 molowego roztworu jodu.

4.3.2.
W wyniku hydrolizy 157 mg polipeptydu o masie molowej 785 g/mol otrzymano 193 mg mieszaniny aminokwasów. Z ilu reszt aminokwasowych składał się ten polipeptyd?

4.3.3.
Ile moli wodoru potrzeba do utwardzenia 1 mola trioleinianu gliceryny?

4.3.4.
Mieszzaninę gazową składającą się z CH$_4$, C$_2$H$_6$ i C$_2$H$_4$ przepuszczono przez wodę bromową i stwierdzono ze objętość mieszaniny zmniejszyła się z 160 cm3 do 85 cm3. Spalając pozostałość w nadmierze tlenu otrzymano 115 cm3 CO$_2$. Wyznacz skład mieszaniny w % objętościowych. Wszystkie objętości gazów były mierzone w tych samych warunkach.

4.3.5.
W badaniach nad kontaktową metodą syntetyz metanolu z tlenkiem węgla i wodoru stwierdzono w jednym z doświadczeń, że 10 dm3 mieszaniny tlenku węgla z wodorem, w stosunku molowym 1 : 3, dało po przejściu przez aparat kontaktowy, a następnie całkowitym wykropleniu metanolu, 7,3 dm3 pozostałości gazowej. Obliczyć, jaki procent substratu, nie wziętego w nadmiarze, przereagował.

4.3.6.
324 gramów skrobi poddano hydrolizie do glukozy. Zakładając, że proces przebiegł w 100% oblicz ile gramów etanolu powstanie w procesie fermentacji glukozy otrzymanej w procesie hydrolizy, jeżeli fermentacja przebiegła z 30%.
4.3.7.
Ile gramów sacharozy należy dodać do reakcji, aby otrzymać 5g fruktozy przyjmując, że wydajność reakcji wynosi 80 %

4.3.8.
W wyniku fermentacji glukozy otrzymano 9,2 kg alkoholu. Jaką ilość glukozy podano fermentacji, jaka jest (w warunkach normalnych) objętość wytworzonego dwutlenku węgla

4.3.9.
Stosunek liczby cząsteczek produktów całkowitego spalania benzyny · CO₂ do H₂O wynosi 15:17. Przyjmując, że w skład tej benzyny wchodzi tylko heksan i oktane, ustal liczbę cząsteczek heksanu do liczby cząsteczek oktane.

4.3.10.
Ile dm³ powietrza odmierzonego w warunkach normalnych potrzeba do spalenia 7,8g benzenu tak, aby powstał dwutlenek węgla?

4.3.11.
Do naczynia zawierającego 5g fenolu rozpuszczonego w benzenie wrzucono 2g potasu. Ile dm³ wodoru (warunki normalne) wydzieliło się podczas reakcji?

4.3.12.
Jaką objętość 36% roztworu aldehydu mrówkowego o gęstości 1,11 g/cm³ użyto do reakcji z Ag₂O jeżeli wydzieliło się 21,6g srebra?

4.3.13.
Czy 10m³ powietrza (warunki normalne) wystarczy do całkowitego spalania 0,77m³ mieszaniny metanu i etanu, bez względu na jej skład procentowy?

4.3.14.
Oblicz objętość powietrza niezbędną do spalenia 1m³ gazu ziemnego (warunki normalne) zawierającego 90% metanu, 5% etanu, 3%CO₂ i 2%N₂, podany skład jest procentowym składem objętościowym.

4.3.15.
Dwutlenek węgla, otrzymany w wyniku całkowitego spalania 1,12 dm³ (warunki normalne) alkanu o gęstości 1,34 g/dm³ wprowadzono do 10 cm³ 30%-owego wodnego roztworu NaOH o gęstości 1,33 g/cm³. Oblicz jaka masa osadu wytraciła się na dnie naczynia (temp. 20 °C)

4.3.16.
W 400g wody rozpuszczono 135g glukozy, którą następnie poddano procesowi fermentacji. Oblicz stężenie procentowe powstałego etanolu, zakładając, że proces fermentacji przebiegł do końca.

4.3.17.
Rozkład termiczny soli wapniowych lub barowych kwasów karboksylowych prowadzi do ketonów. 15,8g octanu wapnia ogrzewano w otwartym naczyniu. Po przerwaniu ogrzewania, w naczyniu znajdowała się substancja stała o masie 12,9 g. Ile procent octanu wapnia uległo rozkładowi? Jakie były produkty rozkładu?

4.3.18.
Pewien węglowodór, homolog etynu spalono całkowicie w tlenie, przy czym zużyto objętość tlenu siedmiokrotnie większą niż objętość par węglowodoru (obie objętości odmierzono w tych samych warunkach ciśnienia i temperatury). Ustal wzór sumaryczny tego węglowodoru.

4.3.19.
Ile dm³ powietrza potrzeba do spalenia 20 gramów pentanu.

4.3.20.
Ile dm³ tlenu potrzeba do spalenia trzech moli pentanu.

4.3.21.
Ile gramów benzenu należy użyć aby otrzymać 15,8 g. bromobenzenu.
Stehiometria reakcji

4.4. Ustalenie składu mieszanin

4.4.1.
Roztworzenie pewnego stopu Zn i Mg wymagało 0,867 dm3 roztworu kwasu azotowego(V) o stężeniu 2,86 mol/dm3. Jaka była, wyrażona w gramach, masa cynku zawartego w tym kawałku stopu, jeśli stop zawierał 30,8% Zn?

4.4.2.
Do 10 g mieszaniny węglanu wapnia, wodorotlenku wapnia, chlorku wapnia i piasku włączone 100 ml wody destylowanej. Otrzymaną zawiesinę ogrzano i dodano do niej 33 ml 5M kwasu solnego. W rezultacie wydzielono 0,8951 dm3 dwutlenku węgla. Z kolei, z mieszaniny po reakcji z kwasem solnym usunięto ilościowo piasek (odsączenie, przemycie, dołączenie roztworu z przemywania do przesączu). Tak otrzymany roztwór miareczkowano 0,1234 M roztworem NaOH wobec błękitu bromotymolowego wyżywając 33,2 ml titranta.

Okrèsli zawartość procentową (wagową) wszystkich trzech związków wapnia w mieszaninie wyjściowej, skoro wiadomo, że zawartość procentowa wapnia wynosi 39.48%.

4.4.3.
Do 816g mieszaniny zawierającej Na$_2$CO$_3$ i Na$_2$CO$_3$.10H$_2$O dodano nadmiar kwasu solnego. W wyniku tej reakcji wydzielono 1,917 dm3 wodoru (warunki normalne). Masa pozostałości, która nie uległa rozpuszczeniu wynosiła 2,0 g. Oblicz skład procentowy stopu.

4.4.4.
Próbkę stopu żelaza, cynku i miedzi o masie 7.0 grama rozpuszczono w HCl i otrzymano 1,917 dm3 wodoru (warunki normalne). Masa pozostałości, która nie uległa rozpuszczeniu wynosiła 2,0 g. Oblicz skład procentowy stopu.
Stechiometria reakcji

4.4-14.
Do roztworzenia próbki mosiądzu (stop miedzi z cynkiem) o masie 50g zużyto 289,5 63% roztworu kwasu azotowego (V). Oblicz wagową zawartość cynku w stopie.

4.4-15.
74 g mieszaniny NaCl i KCl rozpuszczono w wodzie i dodano w nadmiarze stężonego roztworu AgNO₃. Po odsączaniu i wysuszeniu otrzymano 160,6 g osadu AgCl. Jaki był skład procentowy mieszany?n

4.4-16.
Brązal jest stopem miedzi, cyny i glinu. W celu oznaczenia zawartości glinu i cyny w próbce stopu o masie 20 g poddano ją reakcji z kwasem solnym. W reakcji wydzieliło się 2,863 dm³ wodoru. Oblicz zawartość procentową glinu i cyny w stopie, wiedząc, że zawiera on 80% miedzi.

4.4-17.
Rozkładowi termiczemu poddano 7,7 g mieszaniny składającej się z manganianu(VII) potasu oraz chloranu(V) potasu. Otrzymano 1790 cm³ tlenu w przeliczeniu na warunki normalne. Oblicz skład procentowy masowy mieszaniny poddanej rozkładowi.

4.4-18.
Miedzianą płytkę o masie 100g wrzucono do roztworu azotanu(V) srebra. Po pewnym czasie masa płytki wzrosła do 105g. Oblicz liczbę moli srebra, która osadziła się na tej płytcę.

4.4-19.
Obliczyć procentową zawartość KCl w mieszaninie KCl i NaCl, jeżeli na miarękgawkę misyany o masie 0,2343 g metodą Volharda zużyto 42,3 ml AgNO₃ o stężeniu 0,1035 mol/dm³ oraz 10,8 ml NH₄SCN o stężeniu 0,09810 mol/dm³.

4.4-20.
Mieszanina węglanu wapnia i węglanu magnezu zawiera 44,7% tlenku węgla (IV). Oblicz zawartość procentową soli w mieszaninie.

4.4-21.
Do naczynia wprowadzono 10 cm³ mieszaniny tlenu i azotu oraz 5 cm³ wodoru. Po spaleniu mieszaniny i skropleniu pary wodnej objętość gazów wynosiła 9 cm³ w przeliczeniu na warunki normalne. Ile cm³ tlenu zawierała wyjściowa mieszanina.

4.4-22.
Na zredukowanie 3 kilomoli tlenku żelaza(III) zużyto 89,6 m³ tlenku węgla(II) (warunki normalne). Otrzymano mieszaninę żelaza i tlenku żelaza(II). Obliczyć skład procentowy tej mieszaniny.

4.4-23.
W wyniku przepuszczenia pary wodnej nad rozgrzanym żelazem (10g) otrzymano 14g mieszaniny tlenku żelaza (III) i tlenku żelaza (II) dwużelaza(III). Obliczyć:
 a) objętość wydzielonego wodoru (warunki normalne),
 b) skład procentowy mieszaniny tlenków.

4.4-24.
Mieszanina azotu i tlenku azotu otrzymywana w reakcji utleniania amoniaku tlenem miała średnią masę mola 28,7 g. Jaka część mola amoniaku użytego w reakcji utleniła się do tlenku azotu?

4.4-25.
3g mieszaniny bezwodnych soli chlorku sodu i azotanu(V) sodu rozpuszczono w wodzie i dodano roztwór azotanu srebra, aż do ilościowego wytrącenia osadu. Masa osadu po odsączaniu, przemyciu i wysuszeniu wynosiła 1,47g. Obliczyć skład procentowy mieszaniny soli.

4.4-26.
10g mieszaniny chlorku potasu i azotanu(III) amonu prażono aż do momentu, gdy przestały wydzielać się gazy. Masa pozostałości wynosiła 8g. Ile procent azotanu(III) amonu zawierała mieszanina?

4.4-27.
Na rozpuszczenie 3,51g stopu glinu z magnezem zużyto 50cm³ mieszaniny kwasów, sporządzonej z 2 objętości 6-molowego HCl i 3 objętości 4-molowego H₂SO₄. Oblicz procentowy skład stopu.

http://www.chemia.sos.pl
4.4.28.
Pod działaniem kwasu na 1g stopu metali wydzieliło się 2,24dm³ wodoru, w przeliczeniu na warunki normalne. Jaki metal jest głównym składnikiem stopu? Jaka jest jego minimalna i maksymalna zawartość? Wskazówka: Zawartość głównego składnika jest największa, gdy inne nie reagują z kwasem, a najmniejsza, gdy drugi składnik stanowi metal o możliwie najniższej wartości stosunku masy atomowej do wartościowości.
5. Stężenia roztworów

5.1. Stężenie molowe

Stężenie molowe określa nam ilość moli substancji rozpuszczonej w 1dm³ roztworu, czyli roztwór o stężeniu x mol/dm³ oznacza, że w 1dm³ tego roztworu znajduje się x moli substancji rozpuszczonej. Zgodnie z definicją, stężenie molowe liczone jest ze wzoru: \(C_M = \frac{n}{V} \), gdzie V określa objętość roztworu wyrażoną w dm³.

Często objętość roztworu podawana jest w cm³. W celu przeliczenia objętości roztworu z cm³ na dm³, należy objętość wyrażoną w cm³ podzielić przez 1000: \(V_{dm} = \frac{V_{cm}}{1000} \), czyli \(C_M = \frac{n}{V_{cm}} \cdot \frac{1000}{1000} \). Liczbę moli n obliczamy ze wzoru \(n = \frac{m}{M} \), czyli

\[m_{roz} = m_s + m_{rozp} \]

5.1.1. W 150cm³ roztworu znajduje się 50g chlorku wapnia (CaCl₂). Obliczyć stężenie molowe roztworu.

5.1.2. Obliczyć stężenie molowe roztworu zawierającego 6 moli substancji w 2 dm³ roztworu.

5.1.3. Obliczyć, ile moli substancji znajduje się w 0,6dm³ roztworu 2-molowego.

5.1.4. W jakiej objętości 0,5-molowego roztworu znajdują się 2 mole substancji?

5.1.5. W 6dm³ roztworu znajduje się 234g siarczku sodu (Na₂S). Obliczyć stężenie molowe roztworu.

5.1.6. Ile gramów bromku sodu (NaBr) znajduje się w 0,2dm³ 0,1-molowego roztworu?

5.1.7. W jakiej objętości 2,5M roztworu bromku wapnia (CaBr₂) znajduje się 5g CaBr₂?

http://www.chemia.sos.pl
5.1.8.
Ile moli kwasu borowego (H$_3$BO$_3$) znajduje się w 0,5dm3 roztworu, który w 200cm3 zawiera 6,2g kwasu borowego?

5.1.9.
Roztwór wodny MgHPO$_4$ zawiera 0,1 mola P$_2$O$_5$ W 1dm3. Obliczyć stężenie molowe roztworu MgHPO$_4$.

5.1.10.
W 800 cm3 roztworu znajduje się 9,5g chlorku magnezu. Oblicz stężenie molowe tego roztworu.

5.1.11.
Oblicz stężenie molowe roztworu H$_2$SO$_4$ wiedząc, że w 200 cm3 roztworu znajduje się 9,8g tego kwasu.

5.1.12.
Ile cm3 wody należy odparować z 200 cm3 roztworu NaCl o stężeniu 0,2 mol/dm3, aby otrzymać roztwór o stężeniu 0,5 mol/dm3.

5.1.13.
W 200 ml roztworu kwasu siarkowego(VI) znajduje się 0,48 g jonów siarczanowych SO_4^{2-}. Oblicz $p(\text{SO}_4^{2-})$.

5.1.14.
Mamy wodny roztwór kwasu azotowego(V) o stężeniu 22,40 mol/l i gęstości 1,500 g/ml. Oblicz ułamek molowy HNO$_3$ w tym roztworze.

5.1.15.
Oblicz ile gramów wodorotlenku potasu znajduje się w 0,5 kg roztworu o stężeniu 4,25 mol/dm3 i gęstości 1,19 g/cm3.

5.1.16.
W 6 decymetrach sześciennych znajduje się 234g siarczku sodu. Oblicz stężenie molowe roztworu?

5.1.17.
Obliczyć stężenie molowe roztworu otrzymanego po rozpuszczeniu 50g chlorku wapnia w 150cm3 wody, jeśli gęstość tego roztworu wynosi 1,23g/cm3.

5.1.18.
Ile gramów bromku sodu (NaBr) znajduje się w 200cm3 0,1-molowego roztworu?

5.1.19.
Oblicz ile a) moli b) gramów KOH potrzeba do sporządzenia 400 cm3 roztworu tego związku o stężeniu 0,5mola/dm3.

5.1.20.
Obliczyć ułamek molowy NaOH w wodnym roztworze o stężeniu 0,5mol/l. Gęstość roztworu przyjąć za równą 1g/ml. $M_{\text{NaOH}}=40,0g$, $M_{\text{H}_{2}\text{O}}=18,02g$.

5.1.21.
Ile gramów Ca(NO$_3$)$_2$ należy dodać do 25cm3 0,25-molowego roztworu tej soli, aby podwoić stężenie jonów azotanowych(V)?

5.1.22.
Do 200cm3 wody dodano 11,7g NaCl i całość rozcieńczono wodą do objętości 500cm3. Oblicz stężenie molowe otrzymanego roztworu NaCl.

5.1.23.
Oblicz ile gramów KOH potrzeba do sporządzenia 200cm3 roztworu tego związku o stężeniu 0,5 mola na dm3.

5.1.24.
117g chlorku sodu rozpuszczono w 0,5 dm3 wody i otrzymano roztwór o gęstości 1,2 g/cm3. Oblicz stężenie molowe.

5.1.25.
Ile gramów siarczanu(VI) sodu (Na$_2$SO$_4$) znajduje się w 300cm3 roztworu o stężeniu 2 mol/dm3?
Stężenia roztworów

5.1.26.
Oblicz stężenie molowe 30% wodnego roztworu amoniaku (NH₃), wiedząc, że gęstość tego roztworu wynosi 0,89g/cm³.

5.1.27.
Jakie jest stężenie molowe jodu w 2 dm³ roztworu zawierającego 83 gramy substancji?

5.1.28.
Oblicz stężenie molowe roztworu otrzymanego po rozpuszczeniu 234 g siarczku sodu w 6dm³ wody. Gęstość roztworu d=1,04 g/cm³

5.1.29.
Oblicz stężenie molowe roztworu otrzymanego po rozpuszczeniu 50g chlorku wapnia w 150 cm³ wody, jeśli gęstość roztworu d=1,23 g/cm³

5.2. Stężenie procentowe

Stężenie procentowe (pro cent – na sto) określa nam ilość substancji rozpuszczonej w 100g roztworu, czyli stężenie x% oznacza, że w 100g roztworu znajduje się x g substancji rozpuszczonej. Zgodnie z definicją stężenie procentowe liczone jest ze wzoru: c% = 100% • \(\frac{m_s}{m_{rozp} + m_s} \). Z tego wzoru (lub z jego przekształconej formy) możemy wyliczyć:

- stężenie, gdy dana jest masa substancji i masa roztworu/rozpuszczalnika
- masę substancji \(m_s \), gdy dane jest stężenie i masa roztworu/rozpuszczalnika
- masę roztworu/rozpuszczalnika gdy dane jest stężenie i masa substancji rozpuszczonej

Często zamiast masy roztworu (rozpuszczalnika) podana jest jego objętość i gęstość. Masę roztworu (rozpuszczalnika) można wtedy obliczyć w oparciu o wzór na gęstość: \(d = \frac{m}{V} \), czyli \(m_{roz} = dV_{roz} \).

5.2.1.
Obliczyć stężenie procentowe roztworu otrzymanego po rozpuszczeniu 1kg lakieru w 10dm³ acetonu. Gęstość acetonu wynosi 0,79 g/cm³.

5.2.2.
Ile gramów chlorku sodu otrzymamy po odparowaniu do sucha 30g roztworu 6%?

5.2.3.
Ile soli znajduje się w 0,5kg roztworu 2%?

5.2.4.
Ile wody zawiera 400g roztworu soli o stężeniu 20%?

5.2.5.
Ile wody zawiera 1dm³ 45% roztworu wodnego substancji organicznej, jeżeli gęstość roztworu wynosi 0,9g cm³?

5.2.6.
Obliczyć stężenie procentowe nadtlenku wodoru w wodnym roztworze o gęstości 1,02g/cm³, wiedząc, że 1dm³ takiego roztworu zawiera 61,2g nadtlenku wodoru.

5.2.7.
Ile moli NaOH potrzeba do przygotowania 200g roztworu 5%?

5.2.8.
Obliczyć stężenie molowe 96% kwasu siarkowego(VI) o gęstości 1,84g/cm³.

5.2.9.
Oblicz stężenie procentowe roztworu wodorotlenku sodu powstałego przez wprowadzenie 11,5g sodu do 200g wody.

5.2.10.
Ile gramów substancji należy rozpuścić w 360g wody, aby otrzymać roztwór 20%?

http://www.chemia.sos.pl
Stężenia roztworów

5.2-11. Do 60g 12% roztworu soli dodano 20g tej samej soli. Oblicz stężenie procentowe powstałego roztworu.

5.2-12. W 0,5kg wody rozpuszczono 171g dwuwodowego chlorku miedzi(II) CuCl₂2H₂O. Oblicz stężenie procentowe powstałego roztworu.

5.2-13. Do 300g 7% kwasu cytrynowego dodano 250 cm³ wody i dosypano 12g kwasu. Oblicz stężenie procentowe roztworu?

5.2-14. Oblicz stężenie procentowe kwasu azotowego w którym na jeden jon wodorowy przypada osiem cząsteczek wody

5.2-15. W jakim stosunku masowym należy odważyć NaCl i Na₂SO₄ aby po rozpuszczeniu w wodzie w oddzielnych naczyniach otrzymać roztwory o jednakowej zawartości jonów sodowych?

5.2-16. Roztwór zawiera masowo 10% NaCl 10% NaBr 10% KCl. Jakich jonów jest w tym roztworze najwięcej i dlaczego?

5.2-17. Do 600 g 4% roztworu dodano 50 g wody i dosypano 20 g soli i wymieszano. Oblicz stężenie procentowe tego roztworu.

5.2-18. Do 500 g 16% roztworu soli dosypano 40 g soli i odparowano 87 g wody. Oblicz stężenie procentowe powstałego roztworu.

5.2-19. Ile sody i ile wody potrzeba do przygotowania 250g roztworu 2%.

5.2-20. Oblicz stężenie procentowe i molowe kwasu solnego o gęstości 1,05 g/cm³ otrzymanego w wyniku rozpuszczenia 23,9 dm³ chlorowodoru w 350 g wody.

5.2-21. Ile gramów jodu i ile centymetrów sześciennych alkoholu etylowego , 0,8 grama/centymetr sześcienny potrzeba do sporządzenia 15g jodyny czyli 10% roztworu jodu w alkoholu etylowym

5.2-22. Jaką objętość alkoholu trzeba zmieszać z wodą aby otrzymać 50g 25% roztworu?

5.2-23. Przygotowano mieszankę złożoną z 1,5 mola CuO, 2,5 moli CuCl₂ oraz 1,8 mola ZnO i 1,2 mola ZnCl₂. Obliczyć procentową (wagową) zawartość cynku w mieszanki.

5.2-24. Obliczyć stężenie procentowe roztworu kwasu fluorowodorowego otrzymanego po rozpuszczeniu 50,0 litrów HF odmierzonego w temperaturze 27°C i ciśnieniu 2Atm w 2,0 litrach wody.

5.2-25. Oblicz masę tlenu w namiocie o wymiarach : h=1,5m, a=2m, b=2,5m. Przyjmij, że tlenu stanowi 20% objętości powietrza. Gęstość odszukaj w tablicach.
Po jakim czasie, w namiocie zawartość tlenu zmniejszy się do połowy, jeśli śpią w nim dwie osoby i nie następuje dopływ świeżego powietrza? Człowiek zużywa ok. 0,2m³ tlenu na godz.

5.2-26. Do 80cm³ roztworu wodorotlenku potasu o gęstości 1,18g/cm³ i stężeniu 20% dodano 10g granulek tego wodorotlenku. Oblicz stężenie procentowe otrzymanego roztworu.

5.2-27. Oblicz c% kwasu solnego, jeżeli do 100g wody dodamy 10g 36%roztworu HCl.
5.2-28.
50,0 g KI rozpuszczono w 450g wody. Po przeprowadzeniu analizy okazało się, że roztwór zawiera 5 ppm wolnego jodu. Ile miligramów jodu zawierał jodek potasu?

5.2-29.
W 0,5kg wody rozpuszczono 171g dwuwodnego chlorku miedzi(II) CuCl₂·2H₂O. Oblicz stężenie procentowe powstałego roztworu.

5.2-30.
Do 20g 10% roztworu siarczanu(VI) miedzi(II) dodano 5g wody. Jakie jest stężenie procentowe otrzymanego roztworu.

5.2-31.
Oblicz, jaką objętość wody należy zmieszać z 15-procentową wodą amoniakalną o gęstości d=0,924 g/cm³ ze zwykłą wodą, aby otrzymać 8-procentową wodę amoniakalną.

5.2-32.
W kwasie solnym, który jest mocnym elektrolem, na jeden jon wodorowy przypadają 23 cząsteczki wody. Oblicz stężenie procentowe tego kwasu.

5.2-33.
Jaką objętość wody należy dodać do 250 g, 10% roztworu kwasu octowego, aby otrzymać roztwór o stężeniu 5%.

5.2-34.
Mleko zawiera około 4% laktozy. Oblicz ile gramów laktozy spożywa człowiek wypijający rano i wieczorem po szklance mleka. (Przyjmij, że masa szklanki mleka wynosi 250 g)

5.2-35.
W 0,5 dm³ wody o gęstości 1 g/cm³ rozpuszczono 1,12 dm³ chloru. Oblicz stężenie procentowe otrzymanej wody chlorowej.

5.2-36.
W skład siarkowych wód mineralnych wchodzi siarkowodor, H₂S. Ile procent siarkowodoru zawiera woda siarkowa, w której na jedną cząsteczkę tego związku przypada 1887 cząsteczek wody?

5.2-37.
Obliczyć stężenie procentowe roztworu otrzymanego po rozpuszczeniu 3kg soli kuchennej w 25dm³ wody.

5.2-38.
Oblicz skład procentowy mieszaniny CaCO₃ i BaCO₃ w której znajduje się 9% masowych węgla?

5.2-39.
Ile uranu zawiera warstwa ziemi o grubości 1m, powierzchni 1000m² i gęstości 1,5g/cm³, jeżeli średnia zawartość uranu w powierzchniowej warstwie ziemi wynosi 2,4 ppm?

5.2-40.
Oblicz
a) w ilu gramach wody
b) w ilu dm³ wody (d=1g/cm³) należy rozpuścić 40g cukru, aby otrzymać roztwór o stężeniu 20%

5.2-41.
Obliczyć stężenie procentowe azotanu(V) wapnia w roztworze otrzymanym po rozpuszczeniu 20g czterowodnego azotanu(V) wapnia [Ca(NO₃)₂·4H₂O] w 130g wody.

5.2-42.
Ile gramów osiemnasto wodnego siarczanu(VI) glinu użyto do sporządzenia 250g 5% roztworu siarczanu(VI) glinu?

5.2-43.
W 40% roztworze na 1 cząsteczke alkoholu przypada 6 cząsteczek wody. Oblicz masę cząsteczkową alkoholu.

5.2-44.
Jaka objętość gliceryny należy odmierzyć aby otrzymać 300g 20% roztworu, jeżeli gęstość gliceryny wynosi 1,2g/cm³?
5.2-45. Iloma cząsteczkami Cl₂O₇ należałoby nasycić 200g wody, aby powstał 10% rozwór kwasu chlorowego (VII)?

5.2-46. Oblicz stosunek liczby cząsteczek H₂O₂ do liczby cząsteczek H₂O w 10-procentowym roztworze nadtlenku wodoru w wodzie.

5.2-47. 500 dm³ amoniaku (warunki normalne) rozpuszczono w 1 dm³ wody destylowanej. Obliczyć stężenie procentowe amoniaku w tak otrzymanym roztworze.

5.2-48. Przygotowano mieszanię KOH i NaOH w stosunku molowym: n (KOH) : n (NaOH) = 1:3. 12 g tej mieszany dodano do 250 g wody. Obliczyć stężenia procentowe obu składników w tak otrzymanym roztworze.

5.2-49. W 30 g wody rozpuszczono 6 g mieszaniny, zawierającej 40% NaBr i 60% KBr. Obliczyć stężenia procentowe obu soli w tak otrzymanym roztworze.

5.2-50. W 10 cm³ Br₂ o gęstości 3,12 g/cm³ dodano do 200 cm³ CCl₄ o gęstości 1,6 g/cm³. Obliczyć stężenie procentowe Br₂ w tak otrzymanym roztworze.

5.2-51. Do 300 g 40% roztworu chlorku potasu dodano 500 g wody a) obliczyć stężenie procentowe otrzymanego roztworu b) jaką objętość 0,503 molowego roztworu azotanu srebra należy użyć do całkowitego wytrącenia jonów Cl⁻ z 25 g roztworu po rozcieńczeniu.

5.2-52. Ile gramów wody i ile gramów chlorku potasu należy użyć do przygotowania 200 g 2,5% roztworu chlorku potasu.

5.2-53. Pewien deszcz zawierał 0,0006% kwasu azotowego (V) i 0,0005% kwasu siarkowego (VI). Oblicz, jaka ilość tych kwasów opadnie na obszar 1 ha wraz z deszczem tworzącym warstwę grubości 30 mm.

5.2-54. Ile gramów chlorku sodu potrzeba do sporządzenia 2 dm³ 3,75%-owego roztworu? Gęstość tego roztworu wynosi 1,04g/cm³.

5.2-55. W 500g roztworu soli kuchennej znajduje się 5g NaCl. Jakie jest stężenie procentowe NaCl w roztworze.

5.2-56. Jeżeli zawartość soli w wodzie morskiej wynosi 3,5%, to ile soli pozostanie po odparowaniu 1 t wody morskiej?

5.2-57. Oblicz stężenie procentowe roztworu kwasu siarkowego(VI) o gęstości d=1,2 g/cm³, który w 100 cm³ zawiera 33,6 g kwasu.

5.2-58. Oblicz stężenie procentowe stosowanego w kosmetyce spirytusu salicylowego, jeżeli wiadomo, że można go sporządzić przez rozpuszczanie 1,7g krystalicznego kwasu salicylowego w 100cm³ etanolu o gęstości 0,8g/cm³.

5.2-59. Do 10 cm³ 90% roztworu H₂SO₄ o gęstości równej 1,8 g/cm³ dodano 400 cm³ H₂O. Otrzymano nowy roztwór o gęstości 1,21 g/cm³. Obliczyć stężenie procentowe i molowe otrzymanego roztworu.

5.2-60. Analiza wody deszczowej wykazała, że zawiera ona 0,0001% H₂SO₄. Oblicz, ile gramów kwasu spadło na obszar 1 km² podczas 35 mm opadu deszczowego. Gęstość wody deszczowej d=1g/cm³.
5.2-61. Analiza wody deszczowej wykazała, że w 1dm3 znajduje się 20mg kwasu azotowego(V) i 50 mg kwasu siarkowego(VI). Przyjmując gęstość wody deszczowej $d=1g/cm^3$, oblicz stężenie procentowe kwasów w badanej deszczówce.

5.2-62. Kości zawierają 58% Ca$_3$(PO$_4$)$_2$ i 2% Mg$_3$(PO$_4$)$_2$. Jaka jest % zawartość P$_2$O$_5$ w kościach?

5.2-63. Oblicz ile wody należy odparować ze 100kg 8-procentowego roztworu soli kuchennej, aby otrzymany roztwóra miał stężenie większe niż 20%?

5.2-64. Ile gramów wody i ile gramów soli zawiera 400 gramów roztworu soli o stężeniu 20%.

5.2-65. Jaką objętość gliceryny o gęstości 1,26g/cm3 należy wziąć aby otrzymać 200g 15% wodnego roztworu gliceryny.

5.2-66. Oblicz stężenie procentowe roztworu, wiedząc, że w 200g wody rozpuszczono 24g chlorku miedzi(II)- woda (1:2).

5.2-67. Do 80g 15% roztworu H$_2$SO$_4$ dodano 20g wody. Jakie jest stężenie otrzymanego roztworu.

5.3. Rozpuszczalność substancji

Rozpuszczalność definiowana jest jako ilość substancji jaka może być rozpuszczona w danej temperaturze w 100g rozpuszczalnika. Zgodnie z definicją rozpuszczalność R liczymy ze wzoru: $R = \frac{100g \cdot m_s}{m_{rozp}}$.

Roztwór w którym w określonej temperaturze rozpuszczona jest maksymalna ilość substancji (czyli zgodna z rozpuszczalnością w danej temperaturze) nazywa się roztoworem nasyconym. Dla większości substancji rozpuszczalność wzrasta wraz z temperaturą, dlatego po ochłodzeniu roztworu nadmiar substancji wykrystalizowuje z roztworu. Rozpuszczalność ze stężeniem procentowym powiązana jest następującymi wzorami:

$W = \frac{100g \cdot c\%}{100 + c\%} R$ oraz $c\% = 100% \cdot \frac{R}{100 + R}$ (tu również korzystamy z definicji stężenia procentowego – w 100g roztworu o stężeniu c% rozpuszczono jest c% g substancji).

5.3-1. W celu oczyszczenia saletry potasowej przez krystalizację rozpuszczono 300g saletry w 200g wody w temperaturze wrzenia następnie ochłodzono roztwór do temperatury 283K. Obliczyć wydajność procentową procesu oczyszczania, jeżeli rozpuszczalność KNO$_3$ w 283K wynosi 22g.

5.3-2. Obliczyć rozpuszczalność jodku potasu, jeżeli nasycony w 293K roztwór ma stężenie 6mol/dm3, a jego gęstość wynosi 1,68g/cm3.

5.3-3. W pewnej temperaturze rozpuszczalność dwóch substancji A i B jest jednakowa. Czy jednakowe są stężenia: a) procentowe, b) molowe?
5.3.4. Oblicz jakie jest stężenie procentowe wodnego, nasyconego roztworu azotanu(V) potasu w Wodzie w temperaturze 30°C, jeżeli rozpuszczalność tej soli w podanych warunkach wynosi 45,8g na 100g wody.

5.3.5. Rozpuszczalność substancji w wodzie w temp.20°C wynosi 25g. Oblicz stężenie procentowe roztworu nasyconego w tej temperaturze.

5.3.6. Do 800g nasyconego roztworu chlorku sodu w temperaturze 20°C dodano 200g wody. Oblicz stężenie procentowe otrzymanego roztworu.

5.3.7. Do 160g wody o temperaturze 20°C dodano 88,32g chlorku amonu. Oblicz do jakiej temperatury należy ogrzać roztwór aby nastąpiło całkowite rozpuszczenie soli.

5.3.8. Jaka jest rozpuszczalność soli, jeżeli w 150 g wody maksymalnie można rozpuścić 30g soli.

5.3.9. ile wody trzeba dodać do 135,5 g roztworu saletry potasowej, nasyconego w temp. 80°C, aby po oziębieniu do temp. 20°C sól nie wykrystalizowała z roztworu?

5.3.10. Sporządzono 187,5g roztworu KNO$_3$ o stężeniu 20%. Ile gramów soli należy rozpuścić dodatkowo w tym roztworze, aby otrzymać roztwór nasycony w temp. 343K? (Wiemy, że w tej temp. w 100g wody rozpuszczalna się 140g KNO$_3$).

5.3.11. Stężenie procentowe roztworu nasyconego saletry potasowej w temperaturze 35°C wynosi 35%. Ile wody należy dodać do 450g roztworu saletry, nasyconego w temperaturze 35 stopni, aby po oziębieniu do temperatury 10 stopni by był nadal roztworem nasyonym a cała ilość saletry znajdowała się w roztworze. Rozpuszczalność saletry potasowej w temperaturze 10°C wynosi 24g.

5.3.12. Oblicz rozpuszczalność jeżeli stężenie nasyconego roztworu wynosi 10%

5.3.13. Wiedząc, że rozpuszczalność wodorotlenku sodu w wodzie o temperaturze 20°C wynosi 108g/100g H$_2$O, oblicz stężenie procentowe nasyconego roztworu NaOH w wodzie, w tej temperaturze.

5.3.14. Korzystając z wykresu rozpuszczalności substancji, oblicz stężenie procentowe nasyconego roztworu chlorku amonu w temperaturze 50°C?

5.3.15. Rozpuszczalność azotanu(V) potasu w temp. 50°C wynosi 85,5g, a w 10°C jest równa 21g. Oblicz ile gramów tej soli wykrystalizuje z roztworu, jeżeli 150g tego nasyconego w temp. 50°C roztworu ochłodzi się do 10°C?

5.3.16. Korzystając z wykresu rozpuszczalności, obliczyć, ile gramów chlorku amonu można dodatkowo rozpuścić w 250g nasyconego w 293 K roztworu NH$_4$Cl, jeżeli podwyższmy temperaturę do 323 K.

5.3.17. W jakiej ilości wody należy rozpuścić 120 g azotanu(V) ołowiu(II) aby otrzymać roztwór nasycony w temp.30°C.

5.3.18. Obliczyć rozpuszczalność hydratu siarczanu manganu(II) (MnSO$_4$$\cdot$7H$_2$O) w wodzie, w temperaturze 286K, jeśli wiadomo, że nasycony w tej temperaturze roztwór zawiera 29,5% MnSO$_4$.

5.3.19. Oblicz rozpuszczalność substancji jeżeli stężenie nasyconego roztworu wynosi 30%

- 44 -
5.3.20.
Rozpuszczalność jodku srebra w temperaturze 298K wynosi \(3,4 \times 10^{-7}\). Oblicz ile jonów srebra zawiera 1mm\(^3\) nasyconego roztworu jodku srebra.

5.3.21.
Korzystając z wykresów rozpuszczalności substancji oblicz:
a) ile gramów chlorku amonu można dodatkowo rozpuścić w 100g wody po ogrzaniu roztworu od 50\(^\circ\)C do 80\(^\circ\)C, aby roztwór był nadal nasycony.
b) oblicz stężenie procentowe nasyconego roztworu chlorku amonu w temperaturze 70\(^\circ\)C.

5.4. Przeliczanie stężeń

5.4.1.
Oblicz stężenie molowe 46% roztworu KOH o gęstości 1,46g/cm\(^3\).

5.4.2.
Który roztwór ma większe stężenie procentowe 2,33 molowe H\(_2\)SO\(_4\) o gęstości \(d=1,14\ g/cm^3\), czy 2,33 molowy HNO\(_3\) o gęstości \(d=1,08\ g/cm^3\).

5.4.3.
Oblicz stężenie molowe nadtlenku wodoru w 30% perhydrolu o gęstości 1,13g/cm\(^3\).

5.4.4.
Ile gramów 45% kwasu należy dodać do 120g 20% roztworu kwasu, aby otrzymać roztwór 30%.

5.4.5.
Oblicz stężenie procentowe kwasu solnego o stężeniu 12 mol/dm\(^3\) i gęstości 1,18g/cm\(^3\).

5.4.6.
Gęstość 10%-owego roztworu kwasu siarkowego(VI) o stężeniu 1,2 mol/dm\(^3\) wynosi?

5.4.7.
Obliczyć ile należy użyć czystych substancji lub stężonych roztworów do sporządzania następujących roztworów:
1) 1dm\(^3\) 0,1 molowego roztworu tiosiarczanu sodu (Na\(_2\)S\(_2\)O\(_3\))
2) 2 molowego roztworu kwasu siarkowego mając do dyspozycji roztwór 98% o gęstości 1,836g/cm\(^3\).

5.4.8.
Ile kg wody należy odparować z 20,0kg wodnego roztworu MgCl\(_2\) o stężeniu 1,83 mol/l i gęstości 1,16 g/ml, aby otrzymać roztwór 25%?

5.4.9.
Gęstość 10% roztworu siarczanu(VI) glinu wynosi 1,1g/cm\(^3\). Wyrazić skład tego roztworu w ułamkach molowych oraz obliczyć jego stężenie molowe i molalne.
5.5. Mieszanie roztworów

Mieszanie roztworów o znanych stężeniach procentowych

I. Mieszanie roztworów o znanych stężeniach procentowych

II. Mieszanie roztworów o znanych stężeniach molowych

Mieszanie roztworów znanym stężeniem procentowym obliczanie stężenia roztworu końcowego

Wyobraźmy sobie, że mieszamy ze sobą roztwór I z roztworem II. W wyniku zmieszania tych roztworów uzyskujemy roztwór III (roztwór końcowy). Oczywiście masa roztworu III jest sumą masy roztworu I i roztworu II:

\[m_{\text{3rozt}} = m_{\text{1rozt}} + m_{\text{2rozt}}. \]

Masa substancji rozpuszczonej w III roztworze równa jest sumie masy substancji zawartej w I roztworze i masy substancji zawartej w II roztworze:

\[m_{\text{3s}} = m_{\text{1s}} + m_{\text{2s}}, \]

czyli:

\[c_{\text{3rozt}} \times m_{\text{3rozt}} = c_{\text{1rozt}} \times m_{\text{1rozt}} + c_{\text{2rozt}} \times m_{\text{2rozt}}. \]

Mając masę substancji w III roztworze, oraz jego masę łatwo obliczyć stężenie procentowe tego roztworu:

\[c_{\text{3rozt}} = \frac{c_{\text{1rozt}} \times m_{\text{1rozt}} + c_{\text{2rozt}} \times m_{\text{2rozt}}}{m_{\text{3rozt}}}. \]

II sposób

Stężenie procentowe w roztworze końcowym (III) można obliczyć korzystając z metody krzyżowej. W metodzie tej stężenia roztworów zapisuje się w następujący sposób (c_1% > c_2%):

\[\begin{align*}
\text{dane roztworu I} & : c_1\% \\
\text{dane roztworu II} & : c_2\% \\
\text{roztwór końcowy} & : (c_3\%-c_2\%)[g] \\
\text{roztwór końcowy} & : c_3\% \\
\end{align*} \]

\[\begin{align*}
\frac{m_{\text{3rozt}}}{100\%} & = c_1\% \times m_{\text{1rozt}} + c_2\% \times m_{\text{2rozt}} \\
& \Rightarrow c_3\% = \frac{c_1\% \times m_{\text{1rozt}} + c_2\% \times m_{\text{2rozt}}}{m_{\text{3rozt}}}.
\end{align*} \]

II sposób

Stężenie procentowe w roztworze końcowym (III) można obliczyć korzystając z metody krzyżowej. W metodzie tej stężenia roztworów zapisuje się w następujący sposób:

\[\begin{align*}
\text{roztwór końcowy} & : c_1\% \\
\text{roztwór końcowy} & : c_2\% \\
\text{roztwór końcowy} & : (c_3\%-c_2\%)[g] \\
\text{roztwór końcowy} & : c_3\%
\end{align*} \]

Krzyż stężeń odczytujemy w następujący sposób:

Roztwór o stężeniu c_3% powstaje w wyniku zmieszania ze sobą (c_3% - c_2%) g roztworu I i (c_1% - c_3%) g roztworu II. W krzyżu stężeń widoczna jest następująca proporcja:

\[\frac{c_3\%-c_2\%}{c_1\%-c_3\%} = \frac{m_{\text{1rozt}}}{m_{\text{2rozt}}}. \]

Rozwiązując tę proporcję (wymnażamy na krzyż) łatwo wyliczymy poszukiwane stężenie c_3%.

Mieszanie roztworów o znanych stężeniach molowych, obliczanie stężenia roztworu końcowego

Po zmieszaniu roztworu I o objętości V_1 z roztworem II o objętości V_2 otrzymamy roztwór III (końcowy). Jeżeli stężenia C_{M1} i C_{M2} nie są zbyt duże, to objętość roztworu III jest sumą objętości roztworu I i roztworu II: V_3 = V_1 + V_2 (jeżeli ta równość nie jest spełniona, to objętość końcowa musi być podana). W roztworze I znajduje się n_1 = C_{M1} \times V_1 moli substancji rozpuszczonej, a w roztworze II n_2 = C_{M2} \times V_2 moli tej substancji. Oczywiście po zmieszaniu tych roztworów cała ilość substancji rozpuszczonej znajdzie się w roztworze III (substancja rozpuszczona pochodzi jedynie z roztworu I i roztworu II): n_3 = n_1 + n_2 = C_{M1} \times V_1 + C_{M2} \times V_2.

Stężenie molowe III roztworu wynosi:

\[C_{M3} = \frac{n_3}{V_3} = \frac{C_{M1} \times V_1 + C_{M2} \times V_2}{V_1 + V_2} \]

II sposób

W metodzie krzyżowej (C_{M1} > C_{M2}) stężenia zapisujemy w następujący sposób:
Dla krzyża stężeń możemy zapisać następującą proporcję:

\[
\frac{C_{M3} - C_{M2}}{C_{M1} - C_{M3}} = \frac{V_1}{V_2}
\]

(V₁ i V₂ muszą być wyrażone w tych samych jednostkach objętości). Po rozwiązaniu proporcji (po pomnożeniu na krzyż) wyliczymy poszukiwane stężenie C₃.

Po odpowiednim zapisaniu danych możemy skorzystać z metody krzyżowej. W metodzie tej roztwór o większym stężeniu oznacza się jako roztwór I:

<table>
<thead>
<tr>
<th>dane roztworu I</th>
<th>dane roztworu II</th>
<th>roztwór końcowy</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cᵢ</td>
<td>Cᵢ</td>
<td>Cᵢ</td>
</tr>
<tr>
<td>mᵢrozt</td>
<td>mᵢrozt</td>
<td>mᵢrozt</td>
</tr>
<tr>
<td>cᵢ%</td>
<td>cᵢ%</td>
<td>cᵢ%</td>
</tr>
</tbody>
</table>

Po rozwiązaniu układu równań otrzymamy masę roztworu I i roztworu II jaką należy użyć aby otrzymać określoną ilość roztworu końcowego o podanym stężeniu.

II sposób

Po odpowiednim zapisaniu danych możemy skorzystać z metody krzyżowej. W metodzie tej roztwór o większym stężeniu oznacza się jako roztwór I:

<table>
<thead>
<tr>
<th>dane roztworu I</th>
<th>roztwór końcowy</th>
<th>dane roztworu II</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cᵢ</td>
<td>(cᵢ-c₂)[g]</td>
<td>Cᵢ</td>
</tr>
<tr>
<td>mᵢrozt</td>
<td>m₃rozt</td>
<td>mᵢrozt</td>
</tr>
<tr>
<td>cᵢ%</td>
<td>m₄rozt</td>
<td>cᵢ%</td>
</tr>
</tbody>
</table>

Rozpisane dane czytamy w następujący sposób: po zmieszaniu (C₂%-C₄%) g roztworu I z (c₁%-c₃%) g roztworu II otrzymamy (C₃%-C₄%)+(c₁%-c₃%), czyli (c₁%-C₃%) g roztworu III o stężeniu c₃%. Możemy zatem zapisać proporcję:

\[
(C₂%-C₄%) g \text{ roztworu I z roztworem II daje (c₁%-C₃%) g roztworu III, to x g roztworu I z roztworem II da m₄rozt g roztworem III.}
\]

Po rozwiązaniu proporcji otrzymamy masę roztworu I. Masę roztworu II otrzymamy jako różnicę: m₄rozt=m₃rozt+m₁rozt.
Jaką objętość roztworu I i jaką objętość roztworu II musimy zmieszac ze sobą aby uzyskać III roztwór o objętości V i stężeniu C₃M.

Wiadomo, że Vᵢ₊Ⅱ=V₃. W III roztworze znajduje się n₃=C₃M V₃ moli substancji rozpuszczonej, która pochodzi z roztworu I i roztworu II: n₁=C₁M V₁, n₂=C₂M V₂, co możemy zapisać: C₃M V₃=C₁M V₁+C₂M V₂. Rozwiązuw układ równań:

V₁+V₂=V₃.

C₃M V₃=C₁M V₁+C₂M V₂

obliczmy potrzebne objętości roztworu I i II.

II sposób

W metodzie krzyżowej roztwór o większym stężeniu oznacza się jako roztwór I. Dane zapisujemy w następujący sposób:

<table>
<thead>
<tr>
<th>dane roztworu I</th>
<th>roztwór końcowy</th>
<th>dane roztworu II</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C₁M)</td>
<td>C₃M</td>
<td>(C₂M)</td>
</tr>
</tbody>
</table>

W wyniku zmieszania (C₃M-C₂M) objętości I roztworu z (C₁M-C₃M) objętości II roztworu otrzymujemy:

C₃M-C₂M+ C₁M-C₃M= C₁M-C₂M objętości III roztworu, co możemy zapisać w postaci proporcji:

W wyniku zmieszania (C₃M-C₂M) objętości I otrzymujemy C₁M-C₂M objętości III roztworu, to zmieszanie V₁ objętości I roztworu da nam V₃ objętości III roztworu.

Z proporcji łatwo obliczymy V₁, a z zależności V₂=V₃-V₁ obliczamy potrzebną objętość II roztworu.

5.5-1.
W jakim stosunku wagowym należy zmieszac 80% kwas siarkowy z 20% kwasem siarkowym, aby otrzymać roztwór 30%?

5.5-2.
W jakim stosunku objętościowym należy zmieszac roztwór 5-molowy z roztworem 1-molowym, aby otrzymać roztwór 2-molowy

5.5-3.
W jakim stosunku wagowym należy zmieszac 36% kwas solny z roztworem 2,88-molowym (d=1,05g/cm³), aby otrzymać roztwór 15%?

5.5-4.
Zmieszano 10 gramów 10% roztworu z 20 gramami 2,5% roztworu. Obliczyć stężenie procentowe Px otrzymanego roztworu.

5.5-5.
Jaką objętość 6-molowego roztworu NaOH należy dodać do 280cm³ 1-molowego roztworu, aby otrzymać roztwór ok. 2-molowy?

5.5-6.
Zmieszano dwa roztwory: 200cm³ 0,5-molowego roztworu oraz 400 cm³ 1-molowego roztworu. Obliczyć stężenie molowe otrzymanego roztworu.

5.5-7.
Ile gramów wody i ile gramów stężonego kwasu solnego (36%) należy zmieszac, aby otrzymać 200g 10% roztworu?

5.5-8.
Do jakiej objętości wody należy wlać 150g 30% roztworu, aby otrzymać roztwór 22,5%?

5.5-9.
Z jakiei ilości 30% roztworu można otrzymać 12g 50% roztworu po odparowaniu odpowiedniej ilości wody?

5.5-10.
Obliczyć stężenie molowe roztworu otrzymanego przez rozcieńczenie 200g 6% roztworu MgSO₄ do objętości 500cm³.

5.5-11.
Jaką objętość 0,15-molowego NaOH można otrzymać z 0,25dm³ 0,75-molowego NaOH drogą rozcieńczania?

5.5-12.
W jakim stosunku wagowym należy zmieszac 45% i 20% roztwór KCl aby po zmieszaniu stężenie roztworu wynosiło 35%?
5.5-13. Ile gramów 40% roztworu chlorku magnezu należy dodać do 0,5 litra roztworu MgCl₂ o stężeniu 1,43 mol/dm³ i gęstości 1,13 g/cm³ aby otrzymać roztwór 20%?

5.5-14. Ile gramów roztworu 40-procentowego i ile gramów roztworu 12-procentowego należy zmieszać, aby otrzymać 100g roztworu 15-procentowego

5.5-15. Zmieszano 200cm³ 80% roztworu kwasu siarkowego(VI) o gęstości 1,74g/cm³ z 100cm³ 40% roztworem kwasu siarkowego(VI) o gęstości 1,4 g/cm³. Oblicz ile cm³ wody należy dodać do powstałego roztworu kwasu, aby otrzymać roztwór 50%?

5.5-16. Obejściowo, w jakim stosunku objętościowym należy zmieszać wodę i roztwór BaCl₂ o stężeniu 0,55mol/dm³ i gęstości 1,12 g/cm³ aby otrzymać roztwór o stężeniu 3,5%

5.5-17. W jakim stosunku masowym należy wymieszać 96%-y kwas siarkowy(VI) z wodą aby otrzymać roztwór 55%

5.5-18. Obejściowo, ile gramów wodorotlenku sodu należy zmieszać z jego wodnym roztworem o stężeniu 10% aby przygotować 200cm³ roztworu o stężeniu 25% i gęstości d=1,27 g/cm³.

5.5-19. Ile g stężonego – 98% roztworu kwasu siarkowego(VI) dodano do 250g 1% roztworu tego kwasu, jeśli otrzymano roztwór 3%?

5.5-20. Mają alkohol 96% i 30% otrzymać 50g alkoholu 70 stopniowego.

5.5-21. W 120 g wody rozpuszczono 30 g Na₂CO₃ 10H₂O. Jakie jest stężenie procentowe roztworu Na₂CO₃?

5.5-22. Ile gramów 4% roztworu danego składnika należy dodać do 150 g 7% roztworu aby otrzymać roztwór 5%

5.5-23. Obejściowo, jaką objętość wody należy dodać do 300g 20% wodnego roztworu soli kuchennej, aby otrzymać roztwór 3% tej soli.

5.5-24. Stężenie jonów siarczanowych w roztworze Co₂(SO₄)₃ o d=1,01 kg/dm³ wynosi 1,2 mol/dm³. Ile wody należy dodać do 150cm³ tego roztworu aby otrzymać 5% roztwór soli.

5.5-25. Zmieszano 200g 5-procentowego roztworu węglanu sodu z 400g 7-procentowego roztworu tej samej soli. Oblicz stężenie procentowe otrzymanego roztworu.

5.5-26. Chemik chce otrzymać 100g kwasu o stężeniu 54%. Ma do dyspozycji dwa roztwory tego kwasu: o stężeniu 30% i stężeniu 70%. Ile musi wziąć roztworu o większym stężeniu?

5.5-27. 60g kwasu octowego o stężeniu 10% roztworono wodą destylowaną do objętości 250cm³, jakie jest stężenie molowe otrzymanego roztworu kwasu octowego? Masa molowa kwasu octowego wynosi 60g/mol.

5.5-28. Ile mililitrów 54-procentowego roztworu H₂SO₄ należy dodać do 500ml roztworu H₂SO₄ o stężeniu 0,05 mol/l aby otrzymać roztwór zawierał w 1mililitrze 0,009807g H₂SO₄. (d=1,4350 g/ml).
Stężenia roztworów

5.5-29.
Gęstość roztworu kwasu azotowego, w którym znajduje się 0,11ułamka molowego HNO₃, wynosi d=1,18kg/dm³. Obliczyć objętość, do jakiej należy rozcieńczyć 10cm³ tego roztworu, aby otrzymać 2,0 molowy roztwór.

5.5-30.
Ile gramów 45% roztworu kwasu azotowego należy dodać do 120g 20% roztworu kwasu azotowego aby otrzymać roztwór 30%.

5.6. Obliczanie stężenia roztworu na podstawie równania reakcji

5.6-1.
Zmieszano 20dm³ wodoru i 10dm³ chloru (warunki normalne). Po zakończeniu reakcji powstały gaz przepuszczono przez wodę, otwierając 200cm³ kwasu solnego. Obliczyć stężenie molowe tego roztworu.

5.6-2.
Oblicz stężenie molowe alaniny, jeżeli 178cm³ roztworu alaniny przereagowało z 250cm³ KOH o stężeniu 0,4 mol/dm³.

5.6-3.
Jaką objętość amoniaku o gęstości d=0,77g/cm³ należy użyć do otrzymania 50g 5% roztworu mocznika?

5.6-4.
Obliczyć masę molową dwuwodorotlenowego wodorotlenku, wiedząc, że do zbojkętnienia roztworu zawierającego 6,41g tej substancji zużyto 0,25dm³ 0,1-molowego roztworu kwasu ortofosforowego(V). Jaki metal wchodził w skład tego wodorotlenku?

5.6-5.
Czy 112g 5% kwasu solnego wystarczy do rozpuszczenia 5g cynku?

5.6-6.
Jakie powinno być minimalne stężenie procentowe 1kg roztworu wodorotlenku potasu, aby zbojętnić całkowicie 3,57mola kwasu azotowego(V)?

5.6-7.
Do 100cm³ 1,5-molowego kwasu solnego dodano 6,5g cynku. Gdy wodór przestał się wydzielać, roztwór odparowano do sucha. Ile gramów chloru cynku otrzymano?

5.6-8.
Do 1dm³ 0,5-molowego kwasu solnego dodano 250g 10% roztworu wodorotlenku sodu. Jaki odczyn miał roztwór?

5.6-9.
Do 200 cm³ 0,500- molowego roztworu H₂SO₄ dodano 500 cm³ roztworu H₂SO₄ o stężeniu 0,250mol/dm³. Ile cm³ otrzymanego roztworu należy użyć do zbojkętnienia 1,00 dm³ 0,100- molowego roztworu NaOH?

5.6-10.
Do 300g 40% roztworu chlorku potasu dodano 500g wody.
 a) Obliczyć stężenie procentowe otrzymanego roztworu
 b) Jaką objętość (cm sześcienna) 0,503 molowego roztworu azotanu srebra należy użyć do całkowitego wytrącenia jonów Cl⁻ z 25g roztworu po rozcieńczeniu.

5.6-11.
Zmieszano ze sobą 400 cm³ 1,5 molowego roztworu KOH i 200 cm³ 2-molowego roztworu H₂SO₄. Jaki będzie odczyn roztworu po zmieszaniu?

5.6-12.
Zmieszano 2,5g kwasu siarkowego(VI) i 3cm³ kwasu solnego (d=1,1443g/cm³; c%=30%) w kolbie mierowej o pojemności 1dm³. Uzupełniono wodą do kreski. Pobrano 20cm³ tego roztworu i zbojętniono 23,76cm³ roztworu NaOH o stężeniu 0,0500mol/dm³. Oblicz stężenie procentowe kwasu siarkowego.

- 50 -
5.6-13. Do 160 cm³ roztworu NaOH z dodatkiem fenoloflaleiny wproplono roztwór H₂SO₄ o stężeniu 0,2 mol/dm³. Do momentu odbarwienia roztworu zużyto 120 cm³ kwasu. Oblicz stężenie molowe zastosowanego roztworu NaOH.

5.6-14. Do 100g wodnego roztworu chlorku baru BaCl₂ dodano siarczanu(VI) potasu, powodując całkowite stracenie jonów Ba²⁺. Po odsączeniu i wysuszeniu osad BaSO₄ miał masę 4,66g. Oblicz stężenie procentowe roztworu chlorku baru użytego do przeprowadzenia reakcji.

5.6-15. Oblicz objętość SO₂ (odmierzonego w warunkach normalnych), jaka może wejść w reakcję z 250 cm³ roztworu wodorotlenku potasu o stężeniu 1 mol/dm³.

5.6-16. Do roztworu zawierającego 0,5 mola wodorowęglanu sodu dodano 1 mol kwasu solnego, a następnie 0,25 mola wodorowęglanu baru. Jaki odczyn miał roztwór?

5.6-17. Do 300 cm³ 0,2 molowego HNO₃ dodano 300 cm³ 0,25 molowego NaOH. Jakie jest stężenie molowe pozostałego wodorotlenku po reakcji?

5.6-18. Odważono 0,2120g węglanu sodu. Próbkę tę rozpuszczono w wodzie i miareczkowano roztworem kwasu solnego wobec oranżu metylowego. Na zmiareczkowanie próbki zużyto 20,0 cm³ roztworu HCl. Oblicz stężenie molowe roztworu HCl.

5.6-19. Do analizy odważono 0,950g zanieczyszczonego chlorku potasu i rozpuszczono w wodzie otrzymując 250 cm³ roztworu. Na zmiareczkowanie 25 cm³ tego roztworu zużyto 27,5 cm³ roztworu tiosiarczanu sodu o stężeniu 0,08 mol/dm³. Oblicz stężenie molowe roztworu AgNO₃.

5.6-20. Jaką objętość roztworu KOH o stężeniu 0,15 molowym należy użyć do zobojętnienia 0,025 dm³ 0,07 molowego roztworu HNO₃?

5.6-21. Do roztworu zawierającego 0,5 mola wodorowęglanu sodu dodano 1 mol kwasu solnego, a następnie 0,25 mola wodorowęglanu baru. Jaki odczyn miał roztwór?
5.6.27.
Jaką ilość kwasy siarkowego zawiera 200 ml oznaczanego roztworu, jeżeli na zobojętnienie 25 ml 0,0924 mol/l NaOH zużyto 24,5 ml kwasu?

5.6.28.
Jaka jest zawartość % węglanu potasowego w próbce o masie 0,2548 g jeśli po rozpuszczeniu tej próbki w wodzie na jej zmiażdżkowanie zużyto 35,4 ml 0,1 molowego roztworu kwasu solnego?

5.6.29.
Ile mililitrów 54-procentowego roztworu H₃SO₄ o gęstości d=1,4350g/ml należy dodać do 500 ml roztworu NaOH o stężeniu 0,05 mol/l, aby pH w otrzymym po zmieszaniu roztworze wynosiło pH =0,6

5.6.30.
20,00 cm³ kwasu solnego zobojętnia NH₃ wydzielony z 4,000 mmoli (NH₄)₂SO₄. Jakie jest stężenie molowe tego kwasu?

5.6.31.
Odważka Na₂CO₃ o masie 1,600 g jest zobojętniona przez 45,62 cm³ kwasu solnego. Obliczyć a) ile moli Na₂CO₃ zobojętnia 1,000 dm³ kwasu, b) ile moli zobojętnia 1,000 cm³ kwasu, c) stężenie molowe kwasu.

5.6.32.
Obliczyć stężenie molowe a) HCl, b) H₂SO₄, jeśli 40,00 cm³ każdego z tych kwasów zobojętnia alkalia zawarte w odważce 0,5000 g popiołu i odpowiadające 95% zawartości K₂CO₃ w tej próbce

5.6.33.
Mając dane: 10 cm³ roztworu NaOH odpowiada 0,0930 g H₂C₂O₄₂H₂O. 1 cm³ roztworu NaOH odpowiada 0,850 cm³ kwasu solnego – obliczyć miano kwasu.

5.6.34.
Próbkę soli amonowej o masie 1,009 g ogrzewano z KOH i wydzielony amoniak pochłonięto w 50,00 cm³ 0,5127 M HCl. Nadmiar kwasu zobojętniono 1,37 cm³ 0,5272 N NaOH. Obliczyć procentową zawartość azotu w próbie.

5.6.35.
Ile mililitrów 54-procentowego roztworu H₃SO₄ (d=1,4350 g/ml) należy dodać do 500 ml roztworu H₂SO₄ o stężeniu 0,05 mol/l, aby otrzymany roztwór zawierał w 1 ml 0,009807g H₂SO₄.

5.6.36.
Na zmiażdżkowanie 2,000 g próbki technicznego K₂CO₃ zużyto 25,00 cm³ kwasu solnego. Przeliczyć ilość alkaliów w próbie na procentową zawartość K₂O wiedząc, że 20,00 cm³ kwasu solnego zobojętnia amoniak wydzielony z 4,000 milimoli (NH₄)₂HPO₄.

5.6.37.
Do 100 cm³ roztworu kwasu solnego, zawierającego 10,0 mg jonów H⁺ dodano 200 cm³ roztworu tego kwasu o pH=3,90 i 300 cm³ wody. Obliczyć pH otrzymanego roztworu.

5.6.38.
Do roztworu CaCl₂ dodano 40,0 ml AgNO₃ o stężeniu 0,0995 mol/dm³. Na odmiareczkowanie niezwiązanego AgNO₃ zużyto 6,8 ml NH₄SCN o stężeniu 0,1005 mol/dm³. Ile gramów CaCl₂ było w badanej próbce?

5.6.39.
Do 10,0 ml KBr o stężeniu 0,2 mol/dm³ dodano 40,0 ml AgNO₃, a jego nadmiar odmiareczkowano, zużywając 12,4 ml roztworu NH₄SCN. W oddzielnym miareczkowaniu 40,0 ml roztworu AgNO₃ przereagowało z 42,4 ml roztworu NH₄SCN. Obliczyć stężenie molowe tiocyjanianu.

5.6.40.
Obliczyć procentową zawartość zanieczyszczeń w KBr, jeżeli po rozpuszczeniu 0,4000 g tej soli w wodzie i oznaczeniu bromków metodą Volharda zużyto 40,0 ml AgNO₃ o stężeniu 0,1000 mol/dm³ i 10,2 ml KSCN o stężeniu 0,1015 mol/dm³.
5.6-41.
0,7600 g NaCl rozpuszczono w wodzie destylowanej, uzyskując 200 ml roztworu. Pobrano próbkę o objętości 20,0 ml, dodano 30,0 ml AgNO₃ i jego nadmiar odmiareczkowano, zużywając 8,9 ml roztworu KSCN. Obliczyć stężenie molowe KSCN, jeżeli wiadomo, że 1 ml roztworu AgNO₃ odpowiada 1,2 ml KSCN.

5.6-42.
W naczyniu zmieszano: 150 cm³ 0,1-molowego roztworu BaCl₂, 200 cm³ 0,1-molowego roztworu Ba(NO₃)₂, 200 cm³ wodnego roztworu 0,2-molowego BaBr₂, 250 cm³ 0,1-molowego roztworu Na₂SO₄. Oblicz stężenie molowe jonów baru.

5.6-43.
Podczas ustalania miara roztworu NaOH zużyto 15 cm³ tej zasady do zmiareczkowania 30 cm³ roztworu HCl o stężeniu 0,2 mol/dm³. Oblicz stężenie roztworu NaOH.

5.6-44.
Oblicz stężenie procentowe glukozy, jeżeli w trakcie próby Trommera z próbki roztworu glukozy o masie 150 g otrzymano 36 g tlenu miedzi (I).

5.6-45.
Jakie powinno być minimalne stężenie procentowe 1 kg roztworu wodorotlenku potasu, aby całkowicie zobojętnić 3,57 mola kwasu azotowego?

5.6-46.
Ile gramów 20% kwasu siarkowego VI można przyrządzić z 200 gram 20% oleum?

5.6-47.
Ile g Ca(OH)₂ było w roztworze jeśli na jego zobojętnienie zużyto 40 cm³ 0,2 normalnego roztworu kwasu H₃PO₄?

5.6-48.
Odwążkę żeliwa o masie 1,425g poddano operacjom chemicznym i otrzymano 0,0412g SiO₂. Obliczyć % zawartość krzemu w żeliwie.

5.6-49.
Podczas spalania 5g antracytu otrzymano 8,8dm³ CO₂ (warunki normalne). Ile % węgla zawierał antracyt?
6. Termochemia

6.1. Oblicz standardową entalpię reakcji utleniania etanolu do etanalu za pomocą tlenku miedzi(II) na podstawie standardowych entalpii tworzenia reagentów. Standardowe entalpii tworzenia reagentów: etanol: $\Delta H = -287,3 \text{kJ/mol}$; etanal: $\Delta H = -191,4 \text{kJ/mol}$; tlenek miedzi(II): $\Delta H = -155,2 \text{kJ/mol}$; tlenek miedzi(I): $\Delta H = -168 \text{kJ/mol}$; woda: $\Delta H = -285,8 \text{kJ/mol}$

6.1.1.
Na podstawie podanych równań termochemicznych określić entalpię tworzenia substancji stanowiącej produkt reakcji:

a) $\text{H}_2(g) + \text{I}_2(g) \rightarrow 2\text{HI}(g) \quad \Delta H = 52 \text{kJ}$

b) $\text{S}(\text{romb}) + \text{O}_2(g) \rightarrow \text{SO}_2(g) \quad \Delta H = -297 \text{kJ}$

c) $\text{P}_4(s) + 6\text{H}_2(g) \rightarrow 4\text{PH}_3(g) \quad \Delta H = 37 \text{kJ}$

6.1.2.
Podczas łączenia się 3,25 g cynku z siarką wydzieliło się 10,15 kJ energii na sposób ciepła. Obliczyć ciepło tworzenia siarczku cynku.

6.1.3.
Obliczyć entalpię reakcji:

$\text{Fe}_2\text{O}_3(s) + 3\text{Mg}(s) \rightarrow 2\text{Fe}(s) + 3\text{MgO}(s)$

mając następujące dane:

$4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) \quad \Delta H = -1644 \text{kJ}$

$\text{Mg}(s) + 1/2\text{O}_2(g) \rightarrow \text{MgO}(s) \quad \Delta H = -602 \text{kJ}$

6.1.4.
Obliczyć entalpię reakcji:

$\text{Fe}_2\text{O}_3(s) + 2\text{Al}(s) \rightarrow 2\text{Fe}(s) + \text{Al}_2\text{O}_3(s)$

mając następujące dane:

$4\text{Fe}(s) + 3\text{O}_2(g) \rightarrow 2\text{Fe}_2\text{O}_3(s) \quad \Delta H = -1644 \text{kJ}$

$4\text{Al}(s) + 3\text{O}_2(g) \rightarrow 2\text{Al}_2\text{O}_3(s) \quad \Delta H = -3340 \text{kJ}$

6.1.5.
Obliczyć entalpię reakcji:

$\text{N}_2(g) + 1/2\text{O}_2(g) \rightarrow \text{N}_2\text{O}(g)$

mając następujące dane:

$\text{C(s)} + 2\text{N}_2\text{O}(g) \rightarrow \text{CO}_2(g) + 2\text{N}_2(g) \quad \Delta H = -557 \text{kJ}$

$\text{C(s)} + \text{O}_2(s) \rightarrow \text{CO}_2(g) \quad \Delta H = -394 \text{kJ}$

6.1.6.
Obliczyć entalpię reakcji:

$2\text{Cu}(s) + \text{O}_2(g) \rightarrow 2\text{CuO}(s)$

mając następujące dane:

$\text{Cu}_2\text{O}(s) + \text{Cu}_2\text{O}(g) \rightarrow 2\text{CuO}(s) \quad \Delta H = 44\text{kJ}$

$\text{C(s)} + 1/2\text{O}_2(g) \rightarrow \text{CO}(g) \quad \Delta H = -111\text{kJ}$
6.1-11. Obliczyć entalpię reakcji:

\[3C(s) + 4H_2(g) \rightarrow C_3H_8(g)\] \hspace{1cm} (1)

mając następujące dane:

\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \quad \Delta H = -2220 \text{ kJ}\] \hspace{1cm} (2)

\[2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \quad \Delta H = -572 \text{ kJ}\] \hspace{1cm} (3)

\[C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -394 \text{ kJ}\] \hspace{1cm} (4)

6.1-12. Obliczyć entalpię reakcji:

\[CH_4(g) + 2O_2(g) \rightarrow CO_2(g) + 2H_2O(g)\] \hspace{1cm} (1)

mając następujące dane:

\[C_3H_8(g) + 5O_2(g) \rightarrow 3CO_2(g) + 4H_2O(g) \quad \Delta H = -2220 \text{ kJ}\] \hspace{1cm} (2)

\[2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \quad \Delta H = -572 \text{ kJ}\] \hspace{1cm} (3)

\[C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -394 \text{ kJ}\] \hspace{1cm} (4)

6.1-13. Obliczyć entalpię reakcji:

\[H_2(g) + S(s) \rightarrow H_2S(g)\] \hspace{1cm} (1)

mając następujące dane:

\[H_2S(g) + 3/2O_2(g) \rightarrow SO_2(g) + H_2O(s) \quad \Delta H = -519 \text{ kJ}\] \hspace{1cm} (2)

\[2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \quad \Delta H = -484 \text{ kJ}\] \hspace{1cm} (3)

\[S(s) + O_2(g) \rightarrow SO_2(g) \quad \Delta H = -297 \text{ kJ}\] \hspace{1cm} (4)

6.1-14. ile ciepła należy użyć, aby 10 mol wody o temp 20°C doprowadzić do wrzenia pod normalnym ciśnieniem przyjmując, że średnie ciepło właściwe wody wynosi 4,18J/gK.

6.1-15. Entalpia reakcji rozkładu węglanu wapnia wynosi 1206,6 kJ/mol. Ilę ciepła należy dostarczyć, aby rozłożyć 2 t wapienia na wapno palone i dwutlenek węgla?

6.1-16. Ilość ciepła wydzielonego podczas spalania 100dm³ acetylenu wynosiła +5313kJ. Ilę wynosi entalpia spalania acetylenu (w kJ/mol)?

6.1-17. W jakim stosunku masowym należy zmieszać wapień z koksem, aby w piecu wapiennym zapewnić bieg procesu bez doprowadzania energii? W piecu zachodzą reakcje:

\[CaCO_3(s) \rightarrow CaO(s) + CO_2(g) \quad \Delta H = 182 \text{ kJ}\] \hspace{1cm} (1)

\[C(s) + O_2(g) \rightarrow CO_2(g) \quad \Delta H = -394 \text{ kJ}\] \hspace{1cm} (2)

6.1-18. Oblicz standardową entalpię reakcji \(K_2O(s) + H_2O(s) \rightarrow 2KOH(s)\) na podstawie standardowych entalpi tworzenia:

\[
\Delta H^\circ \text{tw. } K_2O = -361,7 \text{ kJ} / \text{mol}
\]

\[
\Delta H^\circ \text{tw. } H_2O = -285,83 \text{ kJ/mol}
\]

\[
\Delta H^\circ \text{tw. } KOH = -424,58 \text{ kJ/mol}
\]

6.1-19. Oblicz standardową entalpię reakcji : \(CO(g) + 2H_2(g) \rightarrow CH_3OH(c)\) na podstawie standardowych entalpi reakcji następujących reakcji:

\[2CO(g) + O_2(g) \rightarrow 2CO_2(g) \quad \Delta H = -282,98 \text{ kJ/mol na mol } CO_2\] \hspace{1cm} (1)

\[2H_2(g) + O_2(g) \rightarrow 2H_2O(g) \quad \Delta H = -572 \text{ kJ/mol na mol } H_2O\] \hspace{1cm} (2)

\[CH_3OH(c) + 3/2O_2(g) \rightarrow CO_2(g) + 2H_2O(c) \quad \Delta H = -726,27 \text{kJ/mol}\] \hspace{1cm} (3)
7. Elektrochemia

7.1.1. Prawdą o natężeniu 0,5A przepływając przez elektrolizer w czasie 2 godzin, spowodował redukcję 0,45g dwuwartościowego jonu pewnego metalu. Podaj nazwę i symbol chemiczny tego metalu.

7.1.2. Podczas elektrolizy roztworu kwasu siarkowego wydzielono się na katodzie 10cm³ gazu. Jaka objętość (warunki normalne) gazu wydzielono się na anodzie.

7.1.3. Dokończyć reakcję: FeCl₃ + SnCl₂ → . Zbudować ogniwo, w którym zachodzi ta reakcja. Podaj nazwy i znaki elektrod oraz reakcje elektrodowe w stanie rozwartym i w czasie pracy ogniwa. Obliczyć SEM ogniwa przy założeniu, że aktywności reagentów wynoszą a=1.

7.1.4. Przez wodny roztwór siarczanu(VI) metalu(II) przepuszczono prąd stały o natężeniu 5A. Na grafitowej anodzie wydzielono 1,96 dm³ gazu (war. norm.), zaś masa cynkowej katody wzrosła o 11,445g. Wydajność prądowa obu procesów wynosiła 100%
 a) oblicz masę atomową wydzielonego metalu i podaj jego nazwę.
 b) oblicz, jak długo należało prowadzić powyższy proces.

7.1.5. W wyniku elektrolizy wodnego roztworu azotanu(V) cynku prądem o I=5A w ciągu 3h i 8s na katodzie wydzielono się 16,35g cynku
 a) napisz równania procesów elektrodowych
 b) oblicz procentową wydajność prądową wydzielania cynku
 c) oblicz jaką objętość w warunkach normalnych zajmie wydzielony: na katodzie wodór i na anodzie tlen.

7.1.6. Elektrolizer napełniono kąpielą do niklowania. Katodę stanowi a cienka blacha miedziana o wymiarach 600 x 60 mm, którą postanowiono dwustronnie pokryć warstwą niklu. Podczas procesu elektrolizy masa płytki akumulatora ołowowego, stanowiącego źródło prądu, zwiększyła się o 16,77 g. Zakładając teoretyczną sprawność wszystkich procesów elektrodowych oblicz w mikronach grubość powłoki niklowej.

7.1.7. Obliczyć czas potrzebny do nałożenia powłoki miedzianej o grubości 15 um. Gęstość prądu w trakcie nakładania powłoki wynosi 4 A/dm². Gęstość miedzi d=8,98 g/cm³.

7.1.8. Płytkę cynkową o masie 50g zanurzono do roztworu azotanu(V) srebra. Po zakończeniu reakcji masa płytki wynosiła 51g. Ile azotanu(V) srebra zawierał roztwór?

7.1.9. Zapisz połówkowe równania reakcji zachodzące na elektrodach akumulatora ołowowego podczas ładowania i rozładowania.

7.1.10. Obliczyć potencjał elektrody srebrowej zanurzonej w roztworze siarczanu srebra o stężeniu 5 10⁻⁶ mol/dm³ w temperaturze 298K

7.1.11. Podczas elektrolizy wody otrzymano 0,5g tlenu. ile gramów wodoru powstało podczas reakcji?

7.1.12. Objętość gazów powstałych w czasie elektrolizy wodnego roztworu azotanu sodu wynosiła 8,4 dm³. O ile zmieniła się masa elektrolizowanego roztworu?
Przez roztwór NiSO$_4$ o objętości 400cm3 i stężeniu 0,4M przepuszczono prąd elektryczny w czasie 1,2 godziny. Obliczyć natężenie prądu niezbędne, aby całkowicie wydzielić nikiel. Nаписать реакции на электродах.

7.1-14.
2 g tału wrzucono do roztworu soli miedzi (II). Tal rozpuścił się, a masa wydzielonej miedzi wynosiła 0,314 g. Obliczyć ładunek jonów tału w otrzymanym roztworze.

Z którym biegunem źródła prądu (dodatnim czy ujemnym) należy połączyć metalowy przedmiot zanurzony w wodnym roztworze AgNO$_3$ aby pokrył się warstwą srebra?

7.1-16.
Jak zmienia się odczyn roztworu siarczanu(VI) miedzi(II) podczas elektrolizy przy stosowaniu elektrod miedzianych?

7.1-17.
Poddano elektrolizie wodny roztwór chlorowodoru o stosunkowo dużym stężeniu. W momencie kiedy objętość wydzielonego wodoru wynosiła 20cm3, przerwano elektrolizę. Jaki produkt otrzymano na anodzie i jaka była jego objętość, jeżeli 10 % tego gazu rozpuściło się w pozostałym roztworze?

7.1-18.
Obliczyć jak długo musi trwać elektroliza, aby przy natężeniu prądu 2A wydzieliło się 10 dm3 wodoru w warunkach normalnych.

7.1-19.
Dwa elektolizery połączono szeregowo i włączono prąd. Po pewnym czasie na katodzie pierwszego elektrolizera w którym znajdował się wodny roztwór AgNO$_3$ wydzieliło się 1,08g srebra, a na katodzie drugiego wydzieliło się 0,187 g żelaza. Obliczyć wartościowość żelaza w związku chemicznym który znajdował się w drugim elektrolizercie.

7.1-20.
Obliczyć SEM w temp 50°C dla ogniwa Zn | 0.01M Zn$^{2+}$ || 1M Zn$^{2+}$ | Zn

7.1-21.
Siła elektromotoryczna ogniwa Zn|Zn$^{2+}$||Cu$^{2+}$|Cu wynosi 1,08V. Jeżeli stężenie [Zn$^{2+}$] wynosi c$_1$, a stężenie [Cu$^{2+}$] równe jest c$_2$, obliczyć:
 a) stosunek stężeń elektrolitów c$_1$/c$_2$
 b) SEM tego ogniwa w przypadku 5 krotnego rozcieńczenia elektrolitu Cu$^{2+}$
 c) napisać równania procesów elektrolitycznych

7.1-22.
Obliczyć natężenie prądu jaki przepływał przez elektrolit jeżeli w ciągu 100 s, wydzieliło się 87 cm3 mieszaniny wodoru i tlenu, odmierzonej pod ciśnieniem 960 hPa w temperaturze 288 K.

7.1-23.
W ogoniw o schemacie: Zn|Zn$^{2+}$||Ag$^+$|Ag płytką cynkowa była umieszczona w 50 cm3 0,1 molowego ZnSO$_4$, a płytkę srebrną w 50 cm3 0,1 molowego AgNO$_3$. Przez pewien czas pobierano prąd z ogniwa, a następnie stwierdzono że masa płytki srebnej wzrosła o 166 mg. Obliczyć końcowe stężenie jonów Ag$^+$ i Zn$^{2+}$

W temp. 294 K SEM ogniwa stężeniowego jest równa 0,014 V. Ogniwo to sporządzono z półogniwa wzorcowego, w którym stężenie jonów Zn$^{2+}$ jest równe 3,6 mol/dm3 oraz półogniwa badanego. Wiedząc, że półogniwo wzorcowe jest katodą podaj stężenie jonów Zn$^{2+}$ w roztworze badanym.

7.1-25.
Dwa elektolizery połączono szeregowo i włączono prąd. Po pewnym czasie na katodzie 1 elektrolizera, na którym znajdował się AgNO$_3$ wydzieliło się 1,08g srebra, a na katodzie drugiego wydzieliło się 0,187g żelaza. Obliczyć wartościowość żelaza w związku chemicznym, który znajdował się w drugim elektrolizercie.

Napisz reakcje zachodzące na elektrodzie platynowej i rtęciowej dla NaOH, Na₂SO₄, H₂SO₄. Wyjaśnij czym różnią się reakcje zachodzące na elektrodach w zależności od elektrody na jakiej przebiegają.

7.1-27.

W ogniwie, w którym elektrody miedziana i glinowa zanurzone były w roztworach swoich soli, po pewnym czasie stwierdzono ubytek elektrody glinowej o 0,9g. Jak zmieniła się (zmalała czy wzrosła) i o ile gramów w tym samym czasie masa elektrody miedzianej?
8. Równowaga chemiczna

8.1. Szybkość reakcji

8.1-1.
W zamkniętym układzie w stałej temperaturze ustala się równowaga: 2CO + O₂ = 2CO₂
Ile razy zwiększy się szybkość reakcji jeżeli ciśnienie mieszaniny zwiększymy 3 krotnie, w którym kierunku zostanie przesunięta równowaga?

8.1-2.
Stała szybkości rozkładu N₂O₅ w temperaturach 0°C i 35°C wynosi odpowiednio 0,787 10⁻⁵/s oraz 13,5 10⁻⁵/s. Jaka jest energia aktywacji tej reakcji? Obliczyć stałą szybkości tej reakcji w temperaturze 25°C.

8.1-3.
Reakcja rozkładu N₂O₅ : 2N₂O₅ → 4NO₂ + O₂ przebiegająca w fazie gazowej jest reakcją pierwszego rzędu. W temperaturze 25°C stała szybkości tej reakcji wynosi 3,4 10⁻⁵ 1/s. Początkowo w zbiorniku reakcyjnym o objętości 2 dm³ znajdowało się 0,1 mola N₂O₅. Oblicz po jakim czasie w zbiorniku pozostanie:
a) 75% pierwotnej ilości N₂O₅
b) 50% pierwotnej ilości N₂O₅
c)25 % pierwotnej ilości N₂O₅

8.1-4.
Reakcja rozkładu substancji A przebiega według równania A=B +C z szybkością v=k[A]. Stężenie początkowe substancji A wynoisło 0,5mol/dm³. Stała szybkości wynosi 0,4s⁻¹. Obliczyć szybkość reakcji :
a) w momencie jej rozpoczęcia
b) po upływie pewnego czasu gdy stężenie substancji A zmniejszyło się o 0,2 mol/dm³.

8.1-5.

8.1-6.
Dla reakcji H₂ + I₂ → 2HI stała szybkości w temperaturze 670K wynosi 3,79 10⁻²dm³ mol⁻¹ s⁻¹, a stała szybkości reakcji odwrotnej 5.88 10⁻⁸ dm³ mol⁻¹ s⁻¹. Obliczyć stałą równowagi Kc, reakcji H₂ + I₂ → 2HI.

8.2. Stała równowagi reakcji

8.2-1.
Obliczyć stałą równowagi chemicznej dla reakcji:
2NO₂ = 2NO + O₂
jeżeli stężenia substancji w stanie równowagi wynoszą: [NO₂]=0,06mol/dm³, [NO]=0,24mol/dm³, [O₂]=0,12mol/dm³.

8.2-2.
W jakim stosunku molowym zmieszano substancje A₂ z substancją B₂ jeśli do momentu ustalenia się stanu równowagi przereagowało 80% związku A₂ z utworzeniem produktu AB. Stała równowagi tej reakcji wynosi 16.

8.2-3.
Stała równowagi reakcji odwratnej: CO+H₂O = CO₂ + H₂ w pewnej temperaturze jest równa 1, a stężenia równowagowe CO₂ i H₂O wynoszą odpowiednio 0,04 i 0,03. Ile wynoszą stężenia początkowe CO i H₂O?

http://www.chemia.sos.pl
8.2.4.

8.2.5.
Ułożyć równania wyrażające prawo działania mas dla następujących reakcji przebiegających w fazie gazowej:
2H₂ + O₂ = 2H₂O
2CO + O₂ = 2CO₂
H₂ + Cl₂ = 2HCl
4NH₃ + 5O₂ = 4NO + 6H₂O

8.2.6.
Ułożyć równania wyrażające prawo działania mas dla podanych reakcji. Określić wymiar stężeniowej stałej równowagi:
a) C(s) + O₂(g) = CO₂(g)
b) 2SO₂(g) + O₂(g) = 2SO₃(g)
c) 2H₂(g) + Cl₂(g) = 2HCl(g)
d) 4NH₃(g) + 5O₂(g) = 4NO(g) + 6H₂O

8.2.7.
Mieszzaninę 2,94 mola jodu i 8,1 mola wodoru ogrzewano w temperaturze 721K do osiągnięcia równowagi w fazie gazowej. Stwierdzono, że powstało 5,64 mola jodowodoru. Obliczyć stałą równowagi Kc tworzenia jodowodoru.

8.2.8.
Dla reakcji H₂ + I₂ → 2HI stała szybkości w temperaturze 670K wynosi 3,79 \times 10^{-2} \text{ dm}³/\text{mol s}, a stała szybkości reakcji odwrotnej 5,88 \times 10^{-4} \text{ dm}³/\text{mol s}. Obliczyć stałą równowagi Kc reakcji: H₂ + I₂ → 2HI.

8.2.9.
W stanie równowagi układu:
N₂ + 3H₂ = 2NH₃
stężenia wynosiły: azotu 3 mol/dm³, wodoru 9 mol/dm³, amoniaku 4 mol/dm³. Obliczyć stężenia wyjściowe wodoru i azotu.

8.2.10.
Równowaga reakcji H₂ + I₂ = 2HI ustalała się przy następujących stężeniach: [H₂]=0,25 mol/dm³, [I₂]=0,05 mol/dm³, [HI]=0,9 mol/dm³. Obliczyć wyjściowe stężenia substratów.

8.2.11.
Dwutlenek węgla ulega w wysokiej temperaturze dysocjacji termicznej na tlenek węgla i tlen. Obliczyć procentowy skład objętościowy mieszaniny gazów w stanie równowagi, jeżeli 20% dwutlenku węgla uległo rozkładowi.

8.2.12.
Obliczyć stężenia gazowych reagentów układu FeO + CO = Fe + CO₂ w stanie równowagi, w temperaturze 1300K, jeżeli Kc=0,5, a początkowo stężenia wynosiły: [CO]=0,5 mol/dm³, [CO₂]=0,1 mol/dm³. Obliczyć wyjściowe stężenia reagentów, a następnie stężenia równowagowe składników po trzykrotnym zwiększeniu stężenia CO w stosunku do stężenia początkowego.

8.2.13.
W jakim stosunku molowym zmieszano dwutlenek węgla z wodorem, jeśli do momentu ustalenia równowagi: CO₂ + H₂ = CO + H₂O Kc=1 (w temp. 1100K) 90% wodoru przereagowało tworząc wodę?

8.2.14.
W pewnych warunkach równowaga reakcji CO + H₂O = H₂ + CO₂ ustała się przy następujących stężeniach: [CO]=1mol/dm³, [H₂O](g)=4mole/dm³, [H₂]=2mol/dm³, [CO₂]=2mol/dm³. Obliczyć kolejno:
1) stałą Kc,
2) wyjściowe stężenia reagentów,
3) stężenia równowagowe składników po trzykrotnym zwiększeniu stężenia CO w stosunku do stężenia początkowego.

8.2.15.
W powietrzu pod wpływem wyładowań elektrycznych w temperaturze 1900K ustała się równowaga: N₂ + O₂ = 2NO, której stała Kc=3,9 \times 10^{13}. Obliczyć procent objętościowy NO w otrzymanej mieszaninie.

8.2.16.
9,2 g mieszaniny równowagowej N₂O₄ = 2NO₂ zajmuje w temperaturze 300K pod normalnym ciśnieniem objętość 2,95 dm³. Obliczyć procent objętościowy NO₂ w mieszaninie i stałą równowagi Kc.
8.2-17. W którą stronę przesunie się równowaga reakcji: \(4\text{HCl} + \text{O}_2 = 2\text{H}_2\text{O} + 2\text{Cl}_2\) jeżeli:
1) wprowadzi się tlen
2) wprowadzi się chlor
3) usunie się część HCl
4) usunie się część H\(_2\text{O}\)?

8.2-18. Zmieszano 3 moli pewnego chlorowca \(X_2\) z 6 molami wodoru w ustalonym stanie równowagi stwierdzono powstanie 4 moli chlorowcowodoru obok nieprzereagowanych substratów. Oblicz stałą równowagi.

8.2-19. W temperaturze 390\(^\circ\)C i pod ciśnieniem 1,013\(\times\)10\(^5\) Pa, 0,0157 mola dinitenu azotu zajmuje objętość 0,001 m\(^3\), przy czym NO\(_2\) dysocjuje częściowo na NO i O\(_2\). Wyznacz stałą równowagi ciśnieniowej i stężeniowej reakcji 2NO+O\(_2\)=2NO\(_2\) (rozpatrujemy gaz doskonały)

8.2-20. W temperaturze 200\(^\circ\)C stała równowagi reakcji odwodornienia alkoholu izopropylowego do acetonu w fazie gazowej wynosi 6,92\(\times\)10\(^4\) Pa. Oblicz stopień dysocjacji alkoholu izopropylowego w temperaturze 200\(^\circ\)C pod ciśnieniem 9,7\(\times\)10\(^4\) Pa przyjmując, że mieszanina gazów spełnia warunki gazu doskonałego.

8.2-21. Do reakcji estryfikacji wzięto 8 g alkoholu etylowego i 12 g kwasu octowego. Jaki liczby gramów czterech składników będą w równowadze, jeśli stałą równowagi osiągnęła w określonej temperaturze wartość 4,5.

8.2-22. W stanie równowagi reakcji \(\text{N}_2 + 3\text{H}_2 = 2\text{NH}_3\) znaleziono następujące stężenia reagentów: \(\text{N}_2\) 0,3 mol/dm\(^3\), \(\text{H}_2\) 0,9 mol/dm\(^3\), \(\text{NH}_3\) 0,4 mol/dm\(^3\). Obliczyć:
a) stałą równowagi reakcji
b) początkowe stężenia azotu i wodoru

8.2-23. Fosgen ulega dysocjacji termicznej wg równania reakcji: COCl\(_2\) = CO + Cl\(_2\). W temperaturze 300\(^\circ\)C w naczyniu ustala się ciśnienie równowagowe p=1,906\(\times\)10\(^5\) Pa, a gęstość reagentów wynosi 3,3g/dm\(^3\). Oblicz stałą dysocjacji fosgenu w tej temperaturze oraz jego stopień dysocjacji.

8.2-24. Stopień dysocjacji HI w temperaturze 770K wynosi 0,34 pod ciśnieniem 1,013\(\times\)10\(^5\)Pa. Obliczyć stałą równowagi \(K_p\) dla obu poniższych reakcji:
a) \(\text{H}_2(\text{g}) + \text{I}_2(\text{g}) = 2\text{HI}(\text{g})\)
b) \(\text{HI}(\text{g}) = \frac{1}{2}\text{H}_2(\text{g}) + \frac{1}{2}\text{I}_2(\text{g})\)

8.2-25. 9,2 g mieszaniny równowagowej N\(_2\text{O}_4\) = 2NO\(_2\) zajmuje w temperaturze 300K, pod normalnym ciśnieniem, objętość 2,95dm\(^3\). Obliczyć procent objętościowy NO\(_2\) w mieszaninie, oraz stałą równowagi K.

8.2-26. Mieszanię złożoną ze 180g kwasu octowego i 230g etanolu poddano reakcji estryfikacji. W stanie równowagi było 220g octanu etylu. Oblicz, ile moli kwasu octowego i ile moli etanolu zawierała mieszanina w stanie równowagi.

8.2-27. Mieszaninę 15 moli jodu i 30 moli wodoru ogrzewano w temp. 7\(21\)K, aż do osiągnięcia równowagi w fazie gazowej. Otrzymano 20 moli jodowodoru. Oblicz stałą równowagi reakcji otrzymywania jodowodoru.

8.2-28. Obliczyć stężenie substancji \(B\) w stanie równowagi jeżeli wartość stały \(K_c\) wynosi 3\(\times\)10\(^-2\), stężenia równowagowe pozostałych substancji wynoszą: \(\text{[A]}=0,5\text{mol/dm}^3\), \(\text{[C]}=0,2\text{mol/dm}^3\), \(\text{[D]}=0,1\text{mol/dm}^3\), a reakcja przebiega w fazie gazowej według równania:
a) \(\text{A} + \text{B} = \text{C} + \text{D}\)
b) \(\text{A} + 2\text{B} = \text{C} + \text{D}\)
c) \(2\text{A} + \text{B} = \text{C} + \text{D}\)

http://www.chemia.sos.pl
8.2.29. Dla reakcji estryfikacji kwasu octowego z alkoholem metylowym wartość stałej równowagi wynosi $K = 5,2$. Oblicz procent przereagowania substratów w stanie równowagi, jeżeli do reakcji wzięto równomolowe ilości kwasu i alkoholu. W jakim stosunku należy zmieszać substraty, aby wydajność estru w stanie równowagi była nie niższa niż 95% w przeliczeniu na kwas octowy?

8.2.30. Do fiolki o pojemności $20cm^3$ wlewano $5,0cm^3$ wody skażonej przez terrorystów. Po ustaleniu równowagi termodynamicznej pomiędzy fazami pobrano $1cm^3$ powietrza i oznaczono bardzo niezdrowy związek na poziomie $0,18 \mu g/cm^3$. Przedmuchując azorem obojętnym, usunięto fazę powietrzną z nad wody skażonej. Po doprowadzeniu do stanu równowagi znowu pobrano $1cm^3$ fazy gazowej i oznaczono bardzo niezdrowy związek na poziomie $0,09 \mu g/cm^3$. Jakie było stężenie bardzo niezdrowego związku w wodzie skażonej?

8.2.31. Pięciochlorek antymonu dysocjuje na trójchlorek i chlor cząsteczkowy. W temp. $206^\circ C$ i pod ciśnieniem $101,3 kPa$ średnia masa reagentów w stanie równowagi wynosi $204,5 g/mol$. Obliczyć stopień dysocjacji pięciochlorku antymonu.

8.2.32. Po ustaleniu się równowagi w układzie, w którym przebiega reakcja syntezy amoniaku w temp. $400^\circ C$ pod ciśnieniem $10,13x10^5 Pa$. Cząsteczkowe ciśnienia poszczególnych reagentów wynoszą: $p_{NH_3}=39000Pa$, $p_{N_2}=243500Pa$, $p_{H_2}=730500Pa$. Obliczyć stałą równowagi.

8.2.40. Stała równowagi reakcji estryfikacji

$\text{CH}_3\text{COOH} + \text{C}_2\text{H}_5\text{OH} \rightleftharpoons \text{CH}_3\text{COOC}_2\text{H}_5 + \text{H}_2\text{O}$

w pewnej temperaturze wynosi 4, a stężenia [mol/dm3] równowagowe wynoszą: kwas-0,1; alkohol-0,4; ester-0,8; woda-0,2

O ile zmieniło się stężenie równowagowe estru po ustaleniu ponownie stanu równowagi, po wprowadzeniu do układu 0,2 molaCH$_3$COOH, przy założeniu że objętość nie uległa zmianie i wynosi 1 dm3
8.2.41.
Mieszzaninę 15 moli jodu i 30 moli wodoru ogrzewano w temperaturze 721K, aż do osiągnięcia równowagi w fazie gazowej. Otrzymano 25 moli jodowodoru. Oblicz stałą równowagi otrzymywania jodowodoru.

8.2.42.
Stała równowagi reakcji 2NO(g) ⇄ N₂(g) + O₂(g) w temperaturze 2°C jest równa 83. Do zamkniętego naczynia o objętości 1,15dm³ wprowadzono 0,05mola NO i ogrzano naczynie do temperatury 2°C. Oblicz:
a) liczby moli wszystkich reagentów w stanie równowagi
b) wydajność reakcji rozkładu NO w tych warunkach

8.2.43.
Stała równowagi reakcji 2NO₂(g) ⇄ N₂O₄(g) w temperaturze 55°C równa się 21. Do zamkniętego naczynia wprowadzono 4 moli NO₂ i 1,5 mola N₂O₄, a następnie ogrzano naczynie do temperatury 55°C. Oblicz, ilość moli każdego z reagentów w stanie równowagi.

8.2.44.
Reakcja 2A + B = 3C + D przebiega w fazie gazowej. Gdy zmieszano 1 mol A, 2 molen B i 1 mol D, po ustaleniu się równowagi w temperaturze 307K i pod ciśnieniem 4atm, mieszanka zawierała 0,8 mola C. Oblicz ułamek molowy B w stanie równowagi.

8.2.45.
Pięciochlorek fosforu dysocjuje zgodnie z równaniem: PCl₅(g) ⇄ PCl₃(g) + Cl₂(g). W pewnej temperaturze z 2 moli PCl₅ znajdujących się w zamkniętym naczyniu do temperatury 500K. Oblicz stężeńia wszystkich reagentów w stanie równowagi, jeśli wiesz, że stała równowagi reakcji PCl₅(g) ⇄ PCl₃(g) + Cl₂(g) w temperaturze 500K jest równa 0,04.

8.2.46.
Stała równowagi reakcji 2NO(g) ⇄ N₂(g) + O₂(g) w temperaturze 2°C jest równa 83. Do zamkniętego naczynia o objętości 1,15dm³ wprowadzono 0,5 mola NO i ogrzano naczynie do temperatury 2°C. Oblicz:
a) liczby moli wszystkich reagentów w stanie równowagi
b) wydajność reakcji rozkładu NO w tych warunkach.

http://www.chemia.sos.pl
8.2.52.
Reakcja odwracalna wyraża się równaniem \(A + B \rightarrowright C + D \). Stała równowagi tej reakcji równa jest 1. Początkowe stężenie substancji A wynosi 2mol/dm\(^3\), zaś substancji B wynosi 10mol/dm\(^3\). Oblicz jaka część A ulegnie przemianie do chwili ustalenia się równowagi.

8.2.53.
Stała równowagi reakcji \(2NO_{2(g)} \rightarrowright 2NO_{(g)} + O_{2(g)} \) w temperaturze 1000K jest równa 71. Oblicz, ile moli NO\(_2\) należy wprowadzić do naczynia o objętości 250dm\(^3\), aby po ogrzaniu do temperatury 1000K rozkładowi uległo 90% NO\(_2\).

8.2.54.
Do naczynia wprowadzono 4,00mola Ar, 3,12mola SO\(_2\) i 2,81 mola O\(_2\). Po ustaleniu się równowagi w procesie tworzenia SO\(_3\) według reakcji 2SO\(_2\)+O\(_2\)=2SO\(_3\) ulamek molowy argonu jest równy 0,4138. Obliczyć stopień przereagowania dwutlenku siarki (wynik podaj w ulamku molowym).

8.2.55.
Określ, w którą stronę przesunie się położenie równowagi egzotermicznej reakcji utlenienia tlenku węgla(II) do tlenku węgla(IV), jeśli:
 a) do układu reakcyjnego wprowadzi się tlen,
 b) do układu doda się tlenek węgla (IV),
 c) z układu usunie się część tlenku węgla(II),
 d) podniesie się temperaturę układu,
 e) podniesie się ciśnienie panujące w układzie

8.2.56.
Określ, w którą stronę przesunie się położenie równowagi przy wzroście ciśnienia panującego w układzie reakcyjnym reakcji:
 a) syntezy chlorowodoru z pierwiastków
 b) utlenienia tlenku siarki(IV) do gazowego tlenku siarki(VI)
 c) dimeryzacji NO\(_2\)
 d) termicznego rozkładu węglanu magnezu
e) syntezy siarczku żelaza(II) z pierwiastków

8.2.57.
Niekiedy zmiana warunków reakcji powoduje zmianę kierunku procesu, czyli zmianę powstających produktów. Podaj przykład takiej reakcji i powiedz, jakie warunki spowodowały zmianę.
9. Różne reakcje

9.1. Zadania tekstowe

9.1.1.
Dane są: potas, kwas siarkowy (VI), tlenek miedzi (II), woda. Należy otrzymać wodorotlenek miedzi (II). Napisz odpowiednie równanie reakcji.

9.1.2.
Sole można otrzymać również innymi sposobami. Metody te to np.
a) tlenek metalu + tlenek kwasowy \(\rightarrow \) sól
b) zasada + tlenek kwasowy \(\rightarrow \) sól + woda
c) metal + niemetal \(\rightarrow \) sól
d) sól1 + kwas1 \(\rightarrow \) sól2 + kwas2
e) sól1 + zasada \(\rightarrow \) sól2 + wodorotlenek
f) sól1 + sól2 \(\rightarrow \) sól3 + sól4
Podaj po 2 przykłady równań reakcji chemicznych w których powstają sole wymienionymi metodami.

9.1.3.
Zaproponuj otrzymywanie wszystkimi znanymi Ci metodami siarczanu(VI) sodu, oraz chlorku wapnia

9.1.4.
Napisz reakcje:
a) chlorku niklu \(\text{NiCl}_2 \) z wodą amoniakalną (chlorek niklu jest atomem centralnym, woda amoniakalna ligandem), napisz reakcje wytrącania się osadu i rozpuszczania osadu. Napisz nazwę kompleksu.
b) wodorotlenku sodu z siarczanem glinu (wodorotlenek sodu jest ligandem, a siarczan glinu kationem centralnym. Napisz reakcje wytrącania osadu i rozpuszczania. Podaj nazwę kompleksu.

9.1.5.
Napisz reakcje:
a) chlorku cyny \(\text{SnCl}_4 \cdot \text{H}_2\text{O} \) z wodorotlenkiem sodu \(\text{NaOH} \)
\(\text{NaOH} \) jest ligandem, a chlorek cyny atomem centralnym.
Napisz reakcje wytracania się osadu i jego rozpuszczania, oraz nazwij powstały kompleks.
b) chlorku potasu z \(\text{AgNO}_3 \) (reakcja wytrącania osadu) i reakcję otrzymanego związku z amoniakiem (reakcja rozpuszczania osadu)
c) \(\text{CuSO}_4 \) z wodą amoniakalną. Reakcje wytrączenia osadu i rozpuszczania. Ligandem jest woda amoniakalna. Nazwij otrzymany związek.

9.1.6.
Ułożyć w formie cząsteczkowej i jonowej równania reakcji rozpuszczania wodorotlenku cynku:
1) w roztworze wodorotlenku sodu,
2) w roztworze kwasu siarkowego(VI). Podać nazwy powstających soli.
Uwaga: Solę zawierające anion \(\text{ZnO}_2^{2-}\) to cynkanany.

9.1.7.
Metaliczny cynk rozpuszcza się w roztworze wodorotlenku potasu, przy czym tworzy się cynkan potasu i wydziela się wodór. Ułożyć równanie reakcji.

9.1.8.
Pierwiastek amfoteryczny o symbolu ogólnym E występuje w anionie soli potasowej \(\text{K}_3\text{EO}_3 \). Posługując się symbolem E ułożyć wzory: tlenku, wodorotlenku, bromku, siarczku, fosforanu(V) tego pierwiastka (na tym samym stopniu utlenienia).

9.1.9.
Zapisz reakcję działania kwasu siarkowego(VI), na wapień prowadzącą do otrzymania dihydratu siarczanu(VI) wapnia (tetraoksosiarczanu diakwowapnia).

http://www.chemia.sos.pl
9.1-10. Wyjaśni dlaczego sole amonowe dobrze rozpuszczają się w wodzie.

9.1-12. Napisz w formie cząsteczkowej i jonowej równania reakcji zachodzących pomiędzy roztworami następujących substancji:
- Na₃PO₄ + CuCl₂ →
- Pb(NO₃)₂ + KI →
- NaOH + FeCl₃ →
- Ba(NO₃)₂ + Na₂SO₄ →

9.1-13. Uzupełnić równania reakcji lub zaznaczyć, że reakcja nie zachodzi:
- a) ……… + H₂O → HNO₂
- b) SO₂ + H₂O → ………
- c) Al₂O₃ + H₂O → ………
- d) ………… + ………… → Na₃PO₄
- e) KOH + H₂SO₄ → ………
- f) Zn(OH)₂ + NaOH → ………

9.1-14. Napisać równania reakcji syntezy tlenku glinu z pierwiastków
1) podać interpretację molową równania
2) obliczyć:
 a) objętość tlenu – warunki normalne
 b) masę glinu niezbędną do otrzymania 0,35 mola tlenku glinu

9.1-16. Podać przykład jonu który w reakcjach chemicznych może spełniać role:
- a) tylko utleniacza,
- b) tylko reduktora,
- c) reduktora lub utleniacza.

9.1-17. Podać przykład pierwiastka, który na zerowym stopniu utlenienia może spełniać role:
- a) tylko utleniacza,
- b) tylko reduktora,
- c) reduktora lub utleniacza.

9.1-18. Zaprojektować doświadczenie, które wykaże amfoteryczny charakter CuO i zasadowy Cu₂O.

9.1.21. Uzupełnić równania reakcji lub zaznaczyć, że reakcja nie zachodzi:

a) + H₂O → HNO₃
b) SO₃ + H₂O →
c) ZnO + H₂O →
d) + → Na₃PO₄
e) LiOH + H₂SO₄ →
f) Al(OH)₃ + NaOH →

9.1.22. Dokończ równania reakcji, lub zaznacz, że reakcja nie zachodzi

HNO₂ + Cr(OH)₃ →
P₄O₁₀ + NaOH →
H₂CO₃ + Na₂SO₃ →
S + Ca →
HBr + Na₂SO₄ →
CaO + H₂SO₄ →
ZnO + NaOH →
Cr₂O₃ + HCl →

9.1.23. Tlenek pewnego II-wartościowego metalu X poddano roztwarzaniu w kwasie solnym. Tlenek reaguje z kwasem zgodnie z równaniem: XO + 2HCl → XCl₂ + H₂O. Podany wykres przedstawia zależność masy roztworzonego tlenku od liczby moli kwasu solnego niezbędnego do jego roztworzenia. Odczytaj z wykresu, jaka liczba moli kwasu jest niezbędna do roztworzenia 10g tlenku. Na podstawie odczytanej wartości oblicz masę molową tlenku oraz podaj symbol metalu X.

9.1.24. Zawartość baru w próbie oznaczono metodą wagową strącając BaSO₄ i uzyskano osad o masie 150mg. Jaka była zawartość baru w mg w próbie jeżeli mnożnik analityczny ma wartość 0,5885

9.1.25. Napisz w postaci cząstkowej równania reakcji otrzymywania poniższych soli wszystkimi możliwymi metodami.

a) azotan(V) wapnia
b) chlorek magnezu

9.1.26. Zaproponuj metody rozdzielania następujących mieszanin

a) siarka + opłuki żelaza
b) cukier + piasek rozpuszczone w wodzie
c) woda morska

9.1.27. Największy diament, jaki znaleziono, pochodzi z Republiki Południowej Afryki. Nadano mu imię Cullinan. Ważył 3106 karatów, jego objętość wynosiła około 177cm³, a gęstość 3,51g/cm³. Oblicz jakiej liczbie gramów odpowiada karat, jednostka masy stosowana w jubilerstwie.

http://www.chemia.sos.pl
9.1.28. Podaj wzory następujące soli:
siarczanu(VI) potasu
węglanu glinu
azotanu(V) wapnia

9.1.29. Podaj nazwy soli opisanych wzorem:
Na₂SO₄
Ca₃(PO₄)₃

9.1.30. Uzupełnij równania reakcji:
a) Mg + H₂SO₄ →
b) Fe +....→ FeS+....
c) Ba(OH)₂ + HCl →....+....

9.1.31. Uzasadnij za pomocą reakcji czym się różni metal spasyowany od metalu zaktynowanego.

9.1.32. Jakie pierwiastek wchodzą w skład związków organicznych, jakie związki węgla nie są związkami organicznymi.

9.1.33. Wyjaśnić różnicę pomiędzy hydrolizą a dysocjacją elektrolityczną.

9.1.34. Napisz równanie reakcji otrzymywania kwasu siarkowego(VI) z odpowiedniego tlenku.

9.1.35. Określi wartościowość reszty kwasowej i podaj nazwę kwasu o wzorze HClO₄.

9.1.36. Ułożyć równania reakcji:
a) kwasu siarkowego(VI) z: Fe, Na, Al,
b) kwasu fosforowego(V) z wodorotlenkiem wapnia,
c) kwasu węglowego z wodorotlenkiem magnezu.

9.1.37. Podać nazwy następujących soli:
ZnCl₂, K₂CO₃, CuSO₄, AgNO₃, NaHSO₄, CaOHCl, KH₂PO₄.

9.1.38. Ułożyć równania reakcji:
a) Ca(OH)₂+CO₂ →
b) Mg+Cl₂ →
c) ZnO+P₂O₅ →
d) Al(OH)₃+SO₃ →

9.1.39. Podaj wzór sumaryczny związku chemicznego złożonego z jonów:
a) Li⁺, Br⁻
b) Ca²⁺, Cl⁻
c) Al³⁺, F⁻
d) Na⁺, O²⁻
e) Al³⁺, S²⁻

9.1.40. Ułożyć równanie poniższych przemian, wskaż równania reakcji analizy, syntezy, wymiany:
sód + siarka → wodorotlenek srebra → tlenek srebra(I)

- 68 -
Różne reakcje

tlenek żelaza(III) + węgiel → tlenek żelaza(II) + tlenek węgla
tlenek żelaza(II) + wodór →

9.1-41.
Ułożyć równania reakcji:
a) spalanie cynku w tlenie
b) rozkład tlenku chloru(IV)
c) redukcji tlenku żelaza(III) glinem

9.1-42.
Ułożyć ogólne równanie reakcji metalu lekkiego n-wartościowego z wodą.
9.2 Schematy reakcji

9.2.1.
Podaj wzory (lub symbole) i nazwy substancji X, Y, Z, W. Napisz odpowiednie równania reakcji oznaczone cyframi 1, 2, 3, 4, 5.

\[\text{Mg} + \text{X} \rightarrow \text{C} + \text{MgO} \]
\[\text{Y} \]
\[\text{Z} \]
\[\text{W} + 2\text{OH}^- \]

9.2.2.
Podaj wzory (lub symbole) i nazwy substancji oznaczonych symbolami A, B, C i D. Napisz i uzgodnij równania reakcji oznaczonych cyframi 1, 2, 3, 4 i 5.

\[\text{C} + \text{B} \rightarrow \text{HNO}_2 \]
\[\text{A} \]
\[\text{N}_2 + \text{A} \rightarrow \text{N}_2\text{O}_3 \]
\[\text{H}_2 + \text{A} \rightarrow \text{B} \]

9.2.3.
Ułóż równania reakcji, za których pomocą można dokonać następujących przemian:
Różne reakcje

a)
\[\text{C} \xrightarrow{1} \text{CO}_2 \xrightarrow{2} \text{H}_2\text{CO}_3 \]
1.
2.

b)
\[\text{S} \xrightarrow{1} \text{SO}_2 \xrightarrow{2} \text{SO}_3 \xrightarrow{3} \text{H}_2\text{SO}_4 \]
\[\xrightarrow{4} \text{H}_2\text{SO}_3 \]
1.
2.
3.
4.

b)
\[\text{Na} \xrightarrow{1} \text{Na}_2\text{O} \xrightarrow{2} \text{NaOH} \]
3.
1.
2.
3.

9.2.4.
Podaj wzory (lub symbole) i nazwy substancji ukrytych pod literami X, Y, Z. Napisz i uzgodnij odpowiednie równania reakcji oznaczone cyframi 1, 2, 3, 4, 5.

9.2.5.
Podaj wzory (lub symbole) i nazwy substancji oznaczonych literami: K, L, M, N. Napisz i uzgodnij równania reakcji oznaczone cyframi 1, 2, 3, 4.
Różne reakcje

1. ...
2. ...
3. ...
4. ...

9.2.6.
Napisz równania reakcji: 1, 2, 3, 4, 5, 6, 7. Podaj nazwy i wzory substancji oznaczonych literami: A, B, C, D.

\[
\begin{align*}
A + C_2H_4 & \rightarrow B & \text{1. CO} & \rightarrow D \\
A + C_3H_6 & \rightarrow B & \text{2. H}_2O & \textbf{+ C} \\
\text{Br}_2 & \rightarrow C & \text{3. } & \textbf{+ B} \\
\text{Br}_2 & \rightarrow C_3HBr_2 & \text{4. } & \textbf{D} \\
\end{align*}
\]

9.2.7.
Związki chemiczne pewnego pierwiastka, oznaczonego symbolem E, poddano czterem kolejnym przemianom pokazanym na schemacie. Wpisz do każdego pustego prostokąta wzór odpowiedniego związku zawierającego pierwiastek E. Ułóż równania reakcji do etapów 1, 2 i 4.

\[
\begin{align*}
\text{E}_2\text{O}_3 & \rightarrow \text{O}_2 & \text{1. O}_{2} & \rightarrow \text{HEO}_4 \\
\text{E}_2\text{O}_3 & \rightarrow \text{H}_2\text{O} & \text{2. } & \text{HEO}_4 \\
\text{E}_2\text{O}_3 & \rightarrow \text{Cu(OH)}_2 & \text{3. } & \text{NaOH} \\
\end{align*}
\]
9.3. Projektowanie doświadczeń

9.3.1.

9.3.2.
Korzystając z tabeli rozpuszczalności soli w wodzie, zaprojektuj metody otrzymywania: a) chlorku srebra b) bromku srebra c) jodku srebra

9.3.3.
W dwóch butelkach znajduje się woda destylowana i woda morska. Zaproponuj doświadczenie, w którym zidentyfikujesz zawartość butelek. Przedstaw schematyczny rysunek przebiegu doświadczenia, obserwacje wnioski i odpowiednie równania reakcji.

9.3.4.
W dwóch niepodpisanych probówkach znajdują się wodne roztwory KCl i Na₂CO₃. Mając do dyspozycji: palnik, pręcik platynowy, roztwór BaCl₂ oraz fenoloftaleinę, zaproponuj trzy różne metody identyfikacji tych roztworów. Opisz tok postępowania i napisz odpowiednie równania reakcji.

9.3.5.
Pewne doświadczenie chemiczne zostało opisane przez ucznia w następujący sposób: "Do niewielkiej objętości żółtego roztworu w probówce dodano kilka kropel stężonego kwasu siarkowego(VI) obserwując zmianę zabarwienia na pomarańczową. Następnie wprolobe ok. 1cm³ ciekłej substancji organicznej i lekko podgrzano. Zaobserwowano zmianę zabarwienia na kolor zielony".

a) zaproponować substancje, których zachowanie chemiczne pasuje do podanego opisu,
b) zapisać odpowiednie jonowe równania reakcji ilustrujące obie przemiany

9.3.6.
W jaki sposób można odróżnić wodne roztwory następujących soli: chlorku sodu, węglanu sodu i chlorku glinu? Zapisz obserwacje oraz wnioski.

http://www.chemia.sos.pl
10. Równowagi jonowe w wodnych roztworach elektrolitów

10.1. Dysocjacja elektrolityczna

10.1.1. Które z podanych niżej substancji ulegają w wodzie dysocjacji elektrolitycznej: HBr, CH₄, Cl₂, Ca(OH)₂, MgCl₂, CCl₄, H₃PO₄, C₂H₆, K₂SO₄?

10.1.2. Ile moli jonów sodu Na⁺ powstanie w procesie dysocjacji elektrolitycznej 10 moli:
1) Na₃PO₄
2) Na₂HPO₄
3) NaH₂PO₄

10.1.3. Do naczyń z wodą wprowadzono następujące substancje: Na₂O, SO₂, CH₄, NH₃, Ca, HCl, O₂, CaCl₂, H₂S. Które roztwory będą zawierały jony H⁺, które OH⁻, a które będą miały odczyn obojętny?

10.1.4. Gdzie znajduje się więcej jonów: w 1g LiF czy w 1g Na₂O?

10.1.5. Uszeregować sole: NaCl, BeF₂ i FeBr₃ w kolejności rosnącej liczby jonów w próbkach o jednakowych masach.

10.1.6. W jakim stosunku wagowym należy odważyć NaCl i Na₂SO₄ aby po rozpuszczeniu w oddzielnych naczyniach z wodą otrzymać roztwory o jednakowej zawartości jonów sodowych?

10.1.7. Dla stężenia jonów [OH⁻]=1 10⁻⁶ mol/dm³ określ:
a) stężenie jonów H⁺
b) pH roztworu
c) odczyn roztworu

10.1.8. Podaj po trzy przykłady dysocjacji kwasu, zasady i soli wskazując mocny i słaby kwas oraz mocną i słabą zasadę.

10.1.9. Czy wiesz, że niektóre kwasy dysocjują stopniowo?
a) Napisz na czym polega dysocjacja stopniowa
b) Które z poznanych kwasów mogą dysocjować stopniowo?
c) Napisz równania dysocjacji stopniowej kwasu fosforowego(V).

10.1.10. Napisz równanie dysocjacji kwasów:
- azotowego(V)
- siarkowego(VI)
- węglowego

10.1.11. Napisz równanie dysocjacji jonowej:
a) azotanu(V) magnezu
b) siarczanu(VI) żelaza(III)
10.2. **Hydroliza**

10.2.2. Określ jaki odczyn wykazują następujące sole: FeCl₂, CH₃COONa, KCl, K₂CO₃. Podaj odpowiednie równania reakcji.

10.2.3. Jaki odczyn będą miały wodne roztwory następujących soli (odpowiedzieć nie układając równań chemicznych): (NH₄)₂SO₄, Na₂SO₄, BaCl₂, Na₂CO₃, NaN₃, KNO₃, K₃PO₄?

10.2.4. Ułożyć jonowe równania reakcji hydrolizy oraz podać odczyn wodnych roztworów następujących soli: KHS, NaHCO₃, NH₄HSO₃, Al₃(SO₄)₃.

10.2.5. Ułożyć równanie reakcji hydrolizy i podać odczyn roztworu:
 a) mrówczanu potasu
 b) octanu potasu
 c) benzosanu sodu

10.2.6. Napisz równania reakcji hydrolizy podanych soli oraz określ dla każej odczyn wodnego roztworu i typ hydrolizy: Na₂SO₃, NH₄Cl, Na₂SO₄.

10.2.7. Oblicz pH i stopień dysocjacji jonów ulegających hydrolizie w następujących roztworach:
 a) 0,5 M NH₄Cl (pKₐ=1,75, pKₖw=14,2)
 b) 0,0002 M CH₃COONa (pKₐ=4,55, pKₖw=14,2)

10.2.8. Napisz równania cząsteczkowe i jonowe reakcji oraz zapis skrócony i określ rodzaj hydrolizy soli chlorku żelaza(II) (FeCl₂).

10.3. **Stała i stopień dysocjacji**

10.3.1. Czy w miarę odparowywania wody z roztworu elektrolitu stopień dysocjacji:
 1) rośnie,
 2) maleje,
 3) pozostaje stały?

10.3.2. Sporządzono dwa roztwory tego samego elektrolitu i stwierdzono, że w roztworze A stopień dysocjacji wynosi 0,4%, a w roztworze B wynosi 1,3%. Który roztwór był bardziej stężony?

10.3.3. Roztwór zawiera 0,25 mola jonów SO₄²⁻ oraz jony potasu. Obliczyć liczbę moli jonów potasu.
10.3.4.
Czy w wodnym roztworze kwasu siarkowego(IV) (siarkawego) liczba jonów H+ jest dwukrotnie większa od liczby jonów SO₃²⁻?

10.3.5.
Uporządkować wszystkie jony obecne w roztworze H₃PO₄ według malejącego ich stężenia.

10.3.6.
Obliczyć stopień dysocjacji jednowodorotlenowej zasady w roztworze o stężeniu 0,1 mol/dm³, jeżeli stężenie molowe jonów OH⁻ wynosi 1,3·10⁻⁴ mol/dm³.

10.3.7.
Obliczyć stopień dysocjacji elektrolitu, wiedząc, że w roztworze znajduje się 0,2 mola cząsteczek zdysocjowanych oraz 0,8 mola. cząsteczek niezdysocjowanych.

10.3.8.
Obliczyć stężenie molowe jonów potasu w 0,1-molowym roztworze siarczku potasu (α=100%).

10.3.9.
który roztwór zawiera więcej jonów H⁺?
1) 1 dm³ 0,1-molowego HF (α = 15%)
2) 1 dm³ 0,01-molowego HCl (α = 100%)

10.3.10.
Obliczyć stężenie molowe niezdysocjowanych cząsteczek w roztworze jednoatutowego kwasu o stężeniu 0,05 mol/dm³ (α=1,9%).

10.3.11.
Obliczyć stężenie molowe jonów wapnia w roztworze zawierającym 1,11g chlorku wapnia (α=100%) w 100 cm³ roztworu.

10.3.12.
Ile gramów żelaza w postaci jonów znajduje się w 200 cm³ 0,5-molowego roztworu siarczanu(VI) żelaza(II) (α=100%)?

10.3.13.
Obliczyć stopień dysocjacji kwasu cyjanowodorowego (HCN) w roztworze o stężeniu 0,1mol/dm³. Stała dysocjacji HCN wynosi 7,2·10⁻¹⁰.

10.3.14.
Stała dysocjacji zasadowej amoniu wynosi 1,8·10⁻⁵. Obliczyć stopnie dysocjacji amoniu w roztworach:
 a) 1-molowym,
 b) 0,1-molowym,
 c) 0,01-molowym.

10.3.15.
Oblicz pH octu będącego 6% roztworem kwasu octowego o gęstości 1g/cm³, przyjmując stopień dysocjacji równy 0,1%.

10.3.16.
Wodny roztwór kwasu octowego K=1,17·10⁻⁵ rozcieńczono, w wyniku czego stopień dysocjacji kwasu wzrósł od wartości 0,3% do 0,4%. Oblicz początkowe stężenie roztworu oraz stężenie po rozcieńczeniu.

10.3.17.
Obliczyć stężenie jonów wodorowych w roztworze jedno-protonowego kwasu (K = 2·10⁻⁴), jeżeli stopień dysocjacji wynosi:
 a) 1 %,
 b) 10%.

10.3.18.
Obliczyć stałą dysocjacji kwasu jedno protonowego, wiedząc, że w jego roztworze o stężeniu jonów wodorowych 0,01 mol/dm³ stopień dysocjacji wynosi 2%.
10.3-19. Obliczyć stężenie molowe roztworu jednowodorotlenowej zasady \((K = 10^{-4})\), wiedząc, że stężenie jonów OH⁻ wynosi 0,02 mol/dm³.

10.3-20. Ile wody trzeba dodać do 0,5dm³ 0,2-molowego roztworu kwasu octowego \((K = 1,8 \times 10^{-5})\), aby stopień dysocjacji kwasu podniósł się?

10.3-21. Oblicz stopień dysocjacji kwasu octowego w roztworze 0,1 molowym, jeżeli przez dodanie pewnej ilości mocnego kwasu zwiększono w tym roztworze stężenie jonów wodorowych do 0,1 mol/dm³. \(K = 1,74 \times 10^{-5}\).

10.3-22. Przy jakim stężeniu roztworu kwasu octowego stopień dysocjacji osiągnie wartość 95%, jeżeli wiadomo, że stopień dysocjacji w 0,0949 molowym roztworze kwasu wynosi 1,35%.

10.3-23. Oblicz stopień dysocjacji kwasu octowego, jeśli w jego wodnym roztworze stężenie niezdysjocjonowanych cząsteczek wynosi 1,994 mol/dm³, natomiast stężenie jonów wodorowych wynosi 0,006 mol/dm³.

10.3-24. Oblicz stopień dysocjacji 0,05 molowego roztworu kwasu octowego jeżeli rozpuszczony jest w 0,2 molowym roztworze kwasu solnego. Stała dysocjacji kwasu octowego wynosi 1,75 \(10^{-5}\).

10.3-25. Obliczyć stopień dysocjacji jedno wodorotlenowej zasady, wiedząc, że jej 0,1-molowy roztwór ma pH=10.

10.3-26. Oblicz wartość stałej dysocjacji HClO₂ jeżeli stopień dysocjacji tego kwasu w 0,2 molowym roztworze wynosi 4,3\(10^{-4}\).

10.3-27. Obliczyć stałą dysocjacji kwasu octowego, wiedząc, że w roztworze tego kwasu o stężeniu 0,1 mol/dm³ pH wynosi 2,9.

10.3-28. Obliczyć zawartość kwasu azotowego(V) (w molach i gramach) w 600cm³ roztworu o pH=4 i stopniu dysocjacji α=0,8

10.3-29. 300cm³ 0,02-molowego wodnego roztworu pewnego kwasu jednoprotokowowego, w którym stopień dysocjacji kwasu wynosił 16,6% zmieszano z 200cm³ wodnego roztworu tego samego kwasu, ale o stopniu dysocjacji 1,8%. Oblicz stopień dysocjacji w tak otrzymanym roztworze.

10.3-30. Obliczyć stopień dysocjacji kwasu jednozasadowego o stężeniu 0,1 mol/dm³, którego stała dysocjacja równa jest 8,0 \(10^{-10}\).

10.3-31. Oblicz stężenie jonów wodorowych w 1 molowym roztworze kwasu fluorowodorowego, którego stała dysocjacji wynosi 6,3 \(10^{-4}\).

10.3-32. Oblicz stężenie jonów w 0,5 molowym roztworze kwasu fluorowodorowego jeżeli stopień dysocjacji wynosi 2,5%.

10.3-33. Oblicz pH roztworu kwasu octowego CH₃COOH s tężeniu 0,5 mol/dm³ jeżeli wiesz, że stała dysocjacji jest równa 1,75 \(10^{-5}\) mol/dm³.

10.3-34. Oblicz stopień dysocjacji kwasu dichlorooctowego w roztworze o stężeniu 0,01 mol/dm³, wiedząc że pKa, tego kwasu wynosi 1,3.
10.3.35.
Wodny roztwór słabego kwasu jednoprotonowego zawiera 0,2 mola jonów H⁺ i 2 mole niezdysocjowanych cząsteczek. Oblicz stopień dysocjacji tego roztworu.

10.3.36.
Stopień dysocjacji 0,1 M roztworu NH₄OH w temperaturze 25°C wynosi 1,33%. Oblicz stężenie jonów OH⁻ oraz stałą reakcji dysocjacji.

10.3.37.
Stała dysocjacji (Kₐ) 0,1 M roztworu NH₄OH w temperaturze 25°C wynosi 1,8 × 10⁻⁵. Oblicz stężenie jonów OH⁻ oraz stopień dysocjacji tej zasady.

10.3.38.
10g 10% roztworu NaOH rozcieńczono wodą do 750cm³. Obliczyć stężenie molowe otrzymanego roztworu oraz jego pH.

10.3.39.
Zmieszano 100cm³ roztworu HCl o stężeniu 0,2mola/dm³ z 10cm³ HCl o stężeniu 0,1mola/dm³. Obliczyć stężenie molowe powstałego roztworu oraz pH wszystkich roztworów.

10.3.40.
Jakie jest stężenie molowe jonów wodorotlenowych i pH w 0,2 molowym roztworze amoniaku. Stała dysocjacji amoniaku Kₐ=1,8 × 10⁻⁵.

10.3.41.
21g NH₄Cl rozpuszczono w 1 dm³ roztworu NH₄OH o stężeniu 0,21mola/dm³. Jakie jest pH otrzymanego roztworu? Stała dysocjacji amoniaku Kₐ =1,8 × 10⁻⁵.

10.3.42.
Który roztwór jest bardziej zasadowy:
 a) zawierający 3 × 10⁻⁷ mola/dm³ jonów H⁺
 b) zawierający 9 × 10⁻⁹ mola/dm³ jonów OH⁻.

10.3.43.
Oblicz pKa słabego kwasu jednoprotonowego jeśli roztwór tego kwasu o pH=2 jest zdysocjowany w 36% (α=36%)

10.3.44.
Jakie jest pH roztworu kwasu mrówkowego HCOOH o stężeniu 0,1 mol/dm³? pKa =3,8

10.3.45.
Jakie jest nominalne (analityczne) stężenie kwasu jednoprotonowego jeśli jego stopień dysocjacji α=50% a pH=2,2?

10.3.46.
Oblicz pH wody destylowanej (100cm³), następnie do 4 zlewek pobrać po 20cm³ wody. Do pierwszej zlewki dodać 1cm³ roztworu kwasu solnego o stężeniu 0,1M, do drugiej 5 cm³ roztworu kwasu solnego o stężeniu 0,1M, do trzeciej 1cm³ wodorotlenku sodu o stężeniu 0,1M, do czwartej 5 cm³ roztworu wodorotlenku sodu o stężeniu 0,1M. Oblicz pH tych roztworów.

10.4. Obliczenia na podstawie pH roztworu
W czystej wodzie stężenie jonów wodorowych równa jest stężeniu jonów wodorotlenowych [H⁺]=[OH⁻]=10⁻⁷ mol/dm³. Iloczyn stężeń jonów wodorowych i wodorotlenowych w wodzie jest także stały i wynosi [H⁺][OH⁻]=10⁻¹⁴ i nazywany jest iloczynem jonowym wody i oznaczany jako Kₚw=10⁻¹⁴ lub pHₚw=14 (p w chemii oznacza –log).

pH – wykładnik stężenia jonów wodorowych [H⁺]=pH=−log[H⁺]=−log(10⁻⁷)=7, natomiast dla roztworów kwasowych pH<7, a dla roztworów zasadowych pH>7. Dla roztworów wodnych istnieje zależność: pH+pOH=14 (pOH=−log[OH⁻]).

Mocne kwasy (mocne zasady) dysocjują w wodzie całkowicie:
HR → H⁺ + R⁻
(MeOH → Me⁺ + OH⁻)
10.4.1. Ile i jakich gramojonów trzeba dodać do 1dm³ roztworu o pH=2 by uzyskać roztwór o pH=4.

10.4.2. Ile g NaOH musi zawierać 1 dm³ roztworu aby jego pH wynosiło 12?

10.4.3. Oblicz pH 0,1 molowego roztworu wodnego NH₄Cl. Stała dysocjacji kwasowej dla NH₄⁺ Kₐ = 5,6 \times 10^{-10}.

10.4.4. Jednoprotonowy kwas znajduje się w roztworze wodnym o pH=3. Kwas jest zdysocjowany w 46%. Oblicz pKₐ dla tego kwasu.

10.4.5. Jaką objętość 0,1-molowego roztworu NaOH należy dodać do 200cm³ 0,01-molowego roztworu H₂SO₄, aby pH roztworu osiągnęło wartość 7?

10.4.6. Oblicz pH 0,01-molowego roztworu zasady sodowej.

10.4.7. Obliczyć wykładnik stężenia jonów wodorowych w 0,2 molowym roztworze kwasu zdysocjowanego w 78%.

10.4.8. Wykładnik stężenia jonów wodorowych w 0,15molowym roztworze kwasu octowego wynosi 2,79. Obliczyć wartość stałej dysocjacji kwasu octowego.

10.4.9. Rozcieńczono 7,5 ml 6M jednozasadowego kwasu do końcowej objętości 150 ml. pH tak otrzymanego roztworu wynosi 3,06. Oblicz stężenie rozcieńczonego kwasu, stężenie jonów wodorowych i wyznacz stopień dysocjacji kwasu w rozcieńczonym roztworze.

10.4.10. Obliczyć pH roztworu kwasu azotowego(III) (azotawego) (K=2 \times 10^{-4}) o stężeniu:
 a) 0,1 mol/dm³,
 b) 0,01 mol/dm³.

10.4.11. Obliczyć pH roztworu otrzymanego po rozpuszczeniu 0,05 g NaOH w 0,5dm³ wody.

10.4.12. Obliczyć stałą dysocjacji kwasu azotowego(III) (azotawego), wiedząc, że jego roztwór o pH=2 ma stopień dysocjacji 2%.

10.4.13. Jaki odczyn będzie miał roztwór otrzymany po zmieszaniu roztworu zawierającego 2 mole kwasu siarkowego(VI) z roztworem zawierającym 2 mole wodorotlenku sodu?

10.4.14. Ile razy należy zwiększyć (lub zmniejszyć) stężenie jonów wodorowych, aby pH:
 a) wzrosło o 1,
 b) zmalało o 1?

10.4.15. Ze wzrostem temperatury wzrasta stopień dysocjacji wody. Czy spowoduje to zmianę odczynu wody?

10.4.16. Obliczyć wartość pOH roztworu, którego pH=1.
Różne reakcje

10.4.17.
Obliczyć wartości pH podanych roztworów, przyjmując α=100%:
a) kwasu solnego o stężeniu 0,05 mol/dm³
b) NaOH o stężeniu 1 mol/dm³
egin{itemize}

10.4.18.
Jaką objętość 0,1-molowego roztworu NaOH należy dodać do 200cm³ 0,01-molowego roztworu H₂SO₄ aby pH roztworu osiągnęło wartość 7?

10.4.19.
O ile zwiększy się pH czystej wody po dodaniu 0,01 mola NaOH do 1dm³ wody?

10.4.20.
Oblicz pH roztworu, którego stężenie kationów wodorowych wynosi 0,0001mol/dm³.

10.4.21.
Jakie jest stężenie amoniaku, jeżeli jego pH=11,2 a stała dysocjacji K=1,75 \times 10^{-5}?

10.4.22.
Do zobojętnienia 15,0 cm³ roztworu NaOH zużyto 25,35cm³ 0,1010 M kwasu solnego. Obliczyć stężenie NaOH, pH kwasu solnego i wodorotlenku sodu.

10.4.23.
Stężenia molowe jonów wodorotlenkowych w dwóch roztworach są następujące:
a) \([\text{[OH}^-]\)=10^{-4},
b) \([\text{[OH}^-]\)=10^{-6}.
 W którym roztworze jest większe stężenie jonów H⁺, a w którym wyższe pH roztworu?

10.4.24.
Obliczyć pH roztworu uzyskanego przez zmieszanie 250cm³ 0,2-molowego HCl i 440cm³ 0,1-molowego NaOH.

10.4.25.
Oblicz pH roztworu wodorotlenku sodu o stężeniu 0,015 mol/dm³.

10.4.26.
Oblicz pH 0,01molowego roztworu kwasu octowego, dla którego pKₐ=4,8

10.4.27.
Oblicz jakie jest pH roztworu zawierającego jony wodorotlenowe o stężeniu 10^{-11}. Określ odczyn roztworu

10.4.28.
Do 35 cm³ 0,20 M HCl dodano 1,2 cm³ 0,20 M KOH. Jakie jest pH otrzymanego roztworu? Założyć addytywność objętości.

10.4.29.
Obliczyć pH roztworu otrzymanego w wyniku reakcji 0,250 dm³ 3,10% roztworu HNO₃ o gęstości 1,015 g/cm³ z 1,60 g Ca. Zaniedbać zmianę objętości roztworu.
 \(M(\text{Ca}) = 40,01 \ M(\text{HNO}_3) = 63,015\)

10.4.30.
Oblicz pH wiedząc że pKa kwasu octowego wynosi pKa= 4,76, jego stężenie 99% i przelano 0,6 cm³ do kolby o pojemności 100 cm³ po czym dopełniono wodą.

10.4.31.
Zmieszano 100cm³ kwasu solnego o pH=4 z 50cm³ zasady sodowej o pH=11. Jaki jest odczyn powstałego roztworu?

10.4.32.
Zasada MeOH ma w roztworze stężenie 0,0051 [mol/dm³]. Przy jakiej wartości stopnia dysocjacji α (w %) wartość pH w tym roztworze będzie wynosić 9.3?

10.4.33.
Do 0,05 mola HNO₂ w 1 dm³ dodano 5g KOH. Oblicz pH końcowe, jeżeli Kₐ HNO₂ wynosi 1,99 \times 10^{-5}.
10.4.34. Siarkę przeprowadzono w dwóch etapach w źródele siarki(VI) zużywając łącznie 1,68 dm³ tlenu (warunki normalne). Uzyskany źródele rozpuszczeno całkowicie w wodzie (założenia na potrzeby zadania) otrzymując 1000 cm³ roztworu. Obliczyć pH tego roztworu zakładając całkowitą dysocjację kwasu.

10.4.35. Jakie formy jonowe wystąpią w wodnym roztworze serény, którego pH wynosi pH=7,9, a kolejne stałe dysocjacji serény wynoszą: pK₁=2,2 pK₂=8,9. Jakie będą proporcje stężeń tych form?

10.4.36. Do 50 ml roztworu kwasu solnego o stężeniu 0,1 mol/l dodano 100 ml roztworu 0,2 mol/l zasady potasowej. Jakie jest pH roztworu?

10.4.37. Do 50 ml roztworu kwasu solnego o stężeniu 0,1 mol/l dodano 100 ml roztworu 0,2 mol/l zasady potasowej. Jakie jest pH roztworu?

10.4.38. 50 cm³ 2M roztworu CH₃COOH zmiareczkowano w 90% 3,5M roztworem NaOH. Oblicz pH roztworu.

10.5. Roztwory buforowe
Buforem nazywamy roztwór słabego kwasu i soli tego kwasu z mocną zasadą, lub roztwór słabej zasady i soli tej zasady z mocnym kwasem. Buforem może również być roztwór soli kwasu wielozasadowego i wodorosoli np.:

a) roztwór CH₃COOH i CH₃COONa lub
b) roztwór NH₃ i NH₄Cl lub
c) roztwór Na₃PO₄ i Na₂HPO₄.

W roztworze takim ustala się stan równowagi dla słabego elektrolitu (słaby kwas lub słaba zasada):

a) CH₃COOH ↔ CH₃COO⁻ + H⁺, czyli K_a = [CH₃COO⁻][H⁺]/[CH₃COOH].

Dla stałej równowagi możemy zatem napisać:

\[K_a = \frac{[CH₃COO^-][H^+]}{[CH₃COOH]} \]

Ostatnie wyrażenie otrzymamy z definicji logarytmów: \(\text{log}(A)\text{-log}(B)=\text{log}(A/B) \).

b) W przypadku roztworu słabej zasady i jej soli z mocnym kwasem postępujemy podobnie. W roztworze ustala się równowaga dla słabego elektrolitu:

\[\text{NH}_3 + \text{H}_2\text{O} \rightarrow \text{NH}_4^+ + \text{OH}^- \], dla której możemy zapisać stężałą równowagi:

\[K_b = \frac{[\text{NH}_4^+][\text{OH}^-]}{[\text{NH}_₃]} \].

\[[H^+] = \frac{10^{-14}}{K_b \cdot C_s} = \frac{C_k}{K_b \cdot C_s} \cdot 10^{-14} \]. Logarytmując obustronnie otrzymamy (w chemii literą p oznaczamy –log): pH=14-pKₗ₆-pK_b+log(Cₛ). Po uporządkowaniu wyrażenia na wykładnik stężenia jonów wodorowych (pH) otrzymamy:

\[pH = 14 - pK_b + \log \frac{C_s}{C_k} \].

Dla buforu zasadowego możemy więc zapisać: \[\text{pH} = \text{pK}_a - \log \frac{C}{C_a} \] gdzie \(\text{pK}_a \) jest stałą dysocjacji kwasowej sprzężonego kwasu z zasadą.

10.5.1.
W jakim stosunku objętościowym należy zmieszać 0,2 mol/l roztwór octanu sodu z 300mL 0,2 mol/L roztworu kwasu octowego, aby otrzymać roztwór o pH=4,95 jeśli \(\text{K}_a = 1,8 \times 10^{-5} \).

10.5.2.
Do roztworu o objętości 1dm³ i zawierającego 1mol wodorotlenku amonowego i 0,35mola chlorku amonowego dodano 4,9g czystego kwasu siarkowego(VI). Obliczyć pH otrzymanego roztworu wiedząc, że stała dysocjacji zasady amonowej wynosi 1,75 \(10^{-5} \) mol/dm³.

10.5.3.
Ile wynosi pH buforu powstałego ze zmieszania 500cm³ 0,2M roztworu CH₃COOH i 500cm³ 0,2M roztworu CH₃COONa? \(\text{K}_{CH₃COOH} = 1,86 \times 10^{-5} \)

10.5.4.
Jaką objętość stężonego roztworu wody amoniakalnej (c= 25% NH₃, d=0,91g/cm³) należy dodać do 10g chlorku amonu, aby po rozcieńczeniu wodą otrzymać 1dm³ roztworu o pH=9,9.

10.5.5.
Ile gramów chlorku amonu należy dodać do 600cm³ 0,4 molowego roztworu wodorotlenku amonu aby jego pH wyniosło 10,8 (\(\text{K}_a = 1,8 \times 10^{-5} \)).

10.5.6.
Wyjaśnij jak przesunie się położenie równowagi reakcji dysocjacji amoniaku po dodaniu do niego roztworu chlorku amonu, jaki roztwór otrzymamy?

10.5.7.
Oblicz pH amonowego roztworu buforowego, w którym stężenie jonów amonowych wynosi 0,2 mol/dm³, a stężenie amoniaku 0,3 mol/dm³, wiedząc, że \(\text{pK}_a \) jonu amonowego wynosi 9,2.

10.5.8.
Czy można otrzymać roztwór buforowy ze 100cm³ kwasu solnego o stężeniu 0,1 mol/dm³ oraz 100cm³ CH₃COONa o stężeniu 0,1mol/dm³ ?

10.5.9.
Oblicz jak zmieni się stężenie jonów H⁺ w roztworze, jeżeli do 100 cm³ roztworu kwasu octowego o stężeniu 0,1 mol/dm³ dodano 20 cm³ roztworu wodorotlenku sodu o stężeniu 0,1 mol/dm³. Stała dysocjacji kwasu \(1,8 \times 10^{-5} \).

10.5.10.
Ile g KOH należy dodać do 654 cm³ roztworu HN₃ o stęż. 0,1 mol/dm³, tak aby uzyskać roztwór buforowy o pH=5? \(\text{K}_{HN₃} = 2,0 \times 10^{-5} \) M\text{KOH}=56,10g/mol.

10.5.11.
Oblicz pH buforu otrzymanego przez zmieszanie kwasu octowego i octanu sodu w proporcjach 90 cm³ kwasu o stężeniu 0,1M i 10 cm³ soli tego kwasu o stężeniu 0,1M, oraz pH:
 a) po dodaniu 1cm³ 0,1M roztworu HCl
 b) po dodaniu 5cm³ 0,1M roztworu HCl
 c) po dodaniu 1cm³ 0,1M roztworu NaOH
 d) po dodaniu 5cm³ 0,1M roztworu NaOH
 e) oraz po dodaniu 20 cm³ wody

10.5.12.
Sporządzono bufor przez zmieszanie kwasu octowego i octanu sodu w proporcjach 90 cm³ kwasu o stężeniu 0,1M i 10 cm³ soli tego kwasu o stężeniu 0,1M. Otrzymany roztwór buforowy podzielono na pięć równych części. Do pierwszej dodano 1cm³ roztworu kwasu solnego o stężeniu 0,1M, do drugiej 5cm³ roztworu kwasu solnego o stężeniu 0,1M, do trzeciej 1cm³
Różne reakcje

10.5-13.
Sporządzono 100 cm3 buforu octanowego (25cm3 0,1M CH$_3$COOH + 75cm3 0,1M CH$_3$COONa). Otrzymany bufor podzielono na 5 części i rozlano do pięciu zlewek, po 20 cm3 do każdej. Do pierwszej dodano 1cm3 0,1M HCl; do drugiej 5cm3 0,1M HCl; do trzeciej 1cm3 0,1M NaOH; do czwartej 5cm3 0,1M NaOH; do piątej 20 cm3 wody destylowanej. Należy obliczyć pH całego buforu (100 cm3), następnie pH w każdej z pięciu zlewek.

10.5-14.
Obróć buforu amonowego o składzie: 10cm3 NH$_3$ o stężeniu 0,4mol/dm3 i 100cm3 NH$_4$Cl o stężeniu 0,4mol/dm3.

10.6. Iloczyn rozpuszczalności

Substancje dobrze rozpuszczalne w wodzie rozpuszczają się w niej całkowicie (oczywiście mamy na myśli stężenia rzędu 0,1 -1mol/dm3). W przypadku soli, roztwory ich są mocnymi elektrolitami i przyjmuje się, że są one całkowicie zdysocjowane na jony: NaCl → Na$^+$ + Cl$^-$

Dla soli reakcja dysocjacji jest nieodwracalna, co oznacza strzałką pojedynczą, skierowaną w stronę produktów. W przypadku soli słabo rozpuszczalnej dysocjacja tych substancji również jest całkowita (zachodzi w 100%), ale pomiędzy jonami w roztworze, a nierozpuszczalnym osadem ustala się stan równowagi:

AgCl (osad) ⇌ Ag$^+$ + Cl$^-$

Ustala się stan równowagi dynamicznej, co w równaniu reakcji oznaczamy dwoma strzałkami skierowanymi w przeciwna strony:

AgCl (osad) ⇌ Ag$^+$ + Cl$^-$

Oczywiście dla reakcji równowagowej możemy zapisać wzór na stałą równowagi: $K = [Ag^+][Cl^-]$. Stężenie nierozpuszczalnego osadu jest stałe, można więc pozbierać się mianownika: $K[AgCl]=[[Ag^+][Cl^-]]$. Iloczyn K[AgCl] nosi nazwę iloczynu rozpuszczalności, dla każdej soli przyjmuje inną, stałą wartość (stała równowagi pomnożona przez stałą wartość stężenia).

W przypadku soli o innym składzie postępujemy podobnie, czyli zaczynamy od napisania równania reakcji dysocjacji, np. dla Ag$_2$S:

Ag$_2$S ⇌ 2Ag$^+$ + S$^{2-}$

Z równania reakcji dysocjacji widzimy, że po rozpuszczeniu x moli siarczku srebra, Ag$_2$S, w 1 dm3 wody, powstaje x moli [S$^{2-}$], z równania reakcji dysocjacji widzimy, że powstana również jony srebra(II) w ilości [Ag$^+$]=2x. Wzór na iloczyn rozpuszczalności $I_R=[Ag^+][S^{2-}]$, czyli $I_R=(2x)^2=4x^2$, oraz $[Ag^+]=\sqrt{I_R}$.

Przy zadaniach na iloczyn rozpuszczalności ważne jest, że nierozpuszczalny osad soli A$_m$B$_n$ wytrąci się tylko wtedy, gdy $[A]^m[B]^n$ będzie większe od I_R.

10.6-1.
Oblicz iloczyn rozpuszczalności FeS wiedząc ze jego roztwór nasycony w T=298 K ma stężenie 6,1 10^{-1} mol/dm3

10.6-2.
Ile gramów AgBr może rozpuścić się w 15 dm3 wody?

10.6-3.
Iloczyn rozpuszczalności CuS wynosi 1034. Jaka jest rozpuszczalność tej soli w mol/L?

10.6-4.
Przeprowadź obliczenia i odpowiedz, czy po zmieszaniu różnych objętości roztworu CaCl$_2$ o stężeniu 0,05mol/dm3 i roztworu Na$_2$SO$_4$ o stężeniu 0,05mol/dm3 wytrąci się osad CaSO$_4$ (iloczyn rozpuszczalności $K=4,93 10^{-5}$)
10.6-5.
Obliczyć rozpuszczalność Ca₃(PO₄)₂ (Iₚ Ca₃(PO₄)₂ = 2·10⁻²⁹) w czystej wodzie i w środowisku wspólnego jonu z CaCl₂ o stężeniu 0,01 mol/dm³.

10.6-6.
Iloczyn rozpuszczalności jodanu(V) ołowiu(II) wynosi 3,2·10⁻¹⁴. Jaka jest rozpuszczalność tej soli wyrażona w molach na litr?

10.6-7.
Czy wytrąci się osad, jeśli 50 cm³ roztworu Ca(NO₃)₂ o stężeniu 5·10⁻⁴ mol/dm³ zamieszana z 50 cm³ roztworu NaF o stężeniu 2·10⁻⁴ mol/dm³? Iloczyn rozpuszczalności CaF₂ wynosi 1,7·10⁻¹⁰.

10.6-8.
Ile razy zmniejszy się rozpuszczalność BaCO₃ w roztworze BaCl₂ o stężeniu 0,01 mol/dm³? KₛₒBaCO₃ = 8·10⁻⁹.

10.6-9.
Do 90 ml roztworu zawierającego 6,35·10⁻² mg jonów I⁻ dodano 10 ml nasyconego roztworu AgCl. Obliczyć czy wytrąci się osad AgI. IₚAgI= 8,3·10⁻¹⁷; IₚAgCl= 1,78·10⁻¹⁰.

10.6-10.
Ile g jonów Ag⁺ zawiera 1500 ml nasyconego roztworu AgCl: IₚAgCl= 1,78·10⁻¹⁰.

10.6-11.
W jakiej ilości wody rozpuszcza się 1,5 g AgCl: IₚAgCl= 1,78·10⁻¹⁰.

10.6-12.
Ile cm³ 0,01 molowego roztworu wodorotlenku sodu należy dodać do 150 cm³ nasyconego roztworu Cd(OH)₂ tak aby rozpuszczalność wodorotlenku kadmu zmalała 50-krotnie IₚCd(OH)₂ = 2·8·10⁻¹⁴.

10.6-13.
Do 150 cm³ roztworu BaCl₂ o stężeniu 0,1 M dodano 75 cm³ roztworu NaF o stężeniu 0,4 M i uzupełniono wodą do objętości 250 cm³. Jaka jest masa jonów F⁻ w osadzie BaF₂ wytworzonym w tym roztworze? IₚBaF₂=1,1·10⁻⁶.

10.6-14.
Iloczyn rozpuszczalności AgCl=1·10⁻¹⁰. Policz stężenie jonów Ag⁺ w roztworze wodnym, oraz stężenie jonów Ag⁺ w roztworze 0,1 M NaCl. Co się stanie z iloczynem rozpuszczalności, gdy do AgCl dodajemy 0,1 M roztwór Na₂SO₄?

10.6-15.
Jak zmieni się wartość iloczynu rozpuszczalności chlorku srebra jeśli do rozpuszczania tej soli użyjemy zamiast wody destylowanej roztworu chlorku potasu? Odpowiedź uzasadnić.

10.6-16.
Jak zmieni się rozpuszczalność chlorku srebra jeśli do rozpuszczania tej soli użyjemy zamiast wody destylowanej roztworu chlorku potasu? Odpowiedź uzasadnić.

10.6-17.
Jaka jest rozpuszczalność (w g/dm³) Ag₂CO₃ jeśli wiadomo, że wartość pKₘₒ tej soli wynosi 11,1?
11. Reakcje redoks

11.1. Utleniacz i reduktor, stopień utlenienia

11.1.1.
Dokończyć reakcje, które zachodzą i wskaż utleniacz:

a) Ag + HNO₃ →
b) Ag + Sn(NO₃)₂ →
c) AgNO₃ + Sn(NO₃)₂ →
d) Sn(NO₃)₄ + H₂ →
e) AgNO₃ + Fe →

11.1.2.
W związkach tlenowych chlor może występować na dodatnich stopniach utlenienia. Określ stopnie utlenienia chloru w podanych związkach:
a) NaClO₂
b) Ca(ClO₄)₂
c) KClO₃
d) HClO.

11.1.3.
Oblicz stopnie utlenienia pierwiastków w związkach:
a) H₂SO₄, H₂SO₃, H₃PO₄, H₂S, HCl, HClO, HClO₃
b) Na₂SO₄, K₂SO₃, P₂O₅, Na₂S, KCl, HClO₄, NaClO₃
c) NH₃, N₂O, NO, SO₂, SO₃, P₂O₅, NH₄Cl

11.1.4.
Obliczyć stopnie utlenienia pierwiastków w następujących jonach:
a) SO₄²⁻, MnO₄⁻, ClO₄⁻, CO₃²⁻
b) AsO₂⁻, AsO₃⁻, MnO₄⁻, H₂PO₄⁻

11.1.5.
Które z podanych niżej reakcji są reakcjami redoks? Wskazać dezechelonator i elektronator (utleniacz i reduktor)
1) H₂SO₄ + Mg → MgSO₄ + H₂
2) FeCl₃ + 3NaOH → Fe(OH)₃ + 3NaCl
3) Zn + Pb(NO₃)₂ → Pb + Zn(NO₃)₂
4) AlCl₃ + 3NH₃ → Al(OH)₃ + 3NH₄Cl
5) Hg(NO₃)₂ + 2NaOH → HgO + 2NaNO₃ + H₂O
6) 2F₂ + 2H₂O → 4HF + O₂
7) As₂O₃ + 6NaOH → 2Na₃AsO₃ + 3H₂O

11.1.6.
NaCl + AgNO₃ → AgCl + NaNO₃
FeO + C → Fe + CO₂
11.2. Dobór współczynników reakcji

11.2.1.
Napisz bilans elektronowy reakcji
Cu + stężony HNO₃ oraz
Cu + rozcieńczony HNO₃

11.2.2.
Napisz reakcje srebra z kwasem siarkowym (VI) i przedstaw bilans elektronowy.

11.2.3.
Dobrać współczynniki w podanych równaniach chemicznych:

a) PbO₂ + HCl → PbCl₂ + Cl₂ + H₂O
b) ZnS + O₂ → ZnO + SO₂
c) Pb + H₂PO₄ → Pb₃(PO₄)₂ + H₂
d) HClO₄ + H₂SO₃ → HCl + H₂SO₄
e) SnCl₂ + HgCl₂ → SnCl₄ + Hg
f) S + HNO₃ → H₂SO₄ + NO
g) BiCl₃ + SnCl₂ → Bi + SnCl₄

11.2.4.
Dobrać współczynniki w podanych równaniach chemicznych:

a) Hg + HNO₃ → Hg(NO₃)₂ + NO + H₂O
b) HNO₃ + HI → NO₂ + HIO₃ + H₂O
c) Mg + HNO₃ → Mg(NO₃)₂ + N₂O + H₂O
d) As₂S₃ + HNO₃ + H₂O → H₃AsO₄ + H₂SO₄ + NO
e) P + HNO₃ + H₂O → H₃PO₄ + NO
f) As₂O₃ + HNO₃ + H₂O → H₃AsO₄ + NO₂O₃
g) AsH₃ + HNO₃ → H₃AsO₄ + NO₂ + H₂O

11.2.5.
W niżej podanych równaniach chemicznych dobrać współczynniki:

a) Zn + HNO₃ → Zn(NO₃)₂ + NH₄NO₃ + H₂O
b) Br₂ + HClO + H₂O → HBrO₂ + HCl
c) HClO₃ + HCl → Cl₂ + H₂O
d) CuS + HNO₃ → CuO + S + NO + H₂O
e) H₂ + H₂SO₄ → I₂ + H₂S + H₂O
f) SO₂ + Br₂ + H₂O → HBr + H₂SO₄
g) H₂SO₃ + Cl₂ + H₂O → H₂SO₄ + HCl

11.2.6.
Zbilansuj równanie reakcji, wskaź utleniacz i reduktor:
K₂Cr₂O₇ + HCl → KCl + CrCl₃ + Cl₂ + H₂O

11.2.7.
Uzupełnij współczynniki w poniżej reakcji redoks, zaznacz utleniacz i reduktor oraz reakcję utlenienia i redukcji. Napisz równanie połówkowe oraz przedstaw formę jonową równania cząsteczkowego: K₂Cr₂O₇ + HCl → KCl + CrCl₃ + Cl₂ + H₂O

11.2.8.
Mieszamy ze sobą w stosunku stechiometrycznym sproszkowane żelazo i pył siarkowy, następnie ogrzewamy próbówkę. W rozżarzonej mieszaninie zachodzi łączenie się pierwiastków z utworzeniem niebiesko-czarnego siarczku żelaza(II).
Podaj równanie reakcji syntety siarczku żelaza(II)
Przedstaw bilans elektronowy tej reakcji
Który pierwiastek jest utleniaczem, a który reduktorem
Który pierwiastek ulega utlenieniu, a który redukcji

11.2.9.
Jaka masa odważki As₂S₃ utleniana roztworem HNO₃ do H₂SO₄ i HAsO₃ przekaże cząsteczkom utleniacza 1 mol elektronów?
11.2-10. Uzupełnij współczynniki z poniższej reakcji redoks, zaznacz stopnie utlenienia i redukcji oraz zapisz równania połatkowe, formę jonową i cząsteczkową równania:
KMnO₄ + KNO₂ + KOH → K₂MnO₄ + KNO₃ + H₂O

11.2-11. W procesie technologicznym utleniono siarkę kwasem azotowym(V). Podaj przebieg reakcji i ustal współczynniki reakcji (redox)

11.2-12. Uzgodnij równanie reakcji i dopisz brakujący reagent:
FeS₂ + NO₃⁻ + ... → Fe³⁺ + SO₄²⁻ + NO + H₂O

11.2-13. Uzupełnij współczynniki w poniższym równaniu reakcji na podstawie bilansu elektronowego. Wskaż utleniacz, reduktor oraz proces utlenienia reakcji:
KMnO₄ + HCl → MnCl₂ + Cl₂ + KCl + H₂O

11.2-14. Uzupełnij równania reakcji redoks:
1. AsH₃ + HNO₃ → H₃AsO₄ + NO₂ + H₂O
2. K₂CO₃ + C → KCN + CO
3. As₂S₃ + HNO₃ + H₂O → H₃AsO₄ + H₂SO₄ + NO
4. CaH₂ + H₂O → Ca(OH)₂ + H₂
5. F₂O + H₂O → O₂ + HF

11.2-15. Obliczyć współczynniki w niżej podanych reakcjach jonowych:
Sn²⁺ + Hg²⁺ → Sn⁴⁺ + Hg₂²⁺
S²⁻ + I₂ → S + I
S²⁻ + SO₄²⁻ + H⁺ → S + H₂O
NO₂⁻ + I⁻ + H⁺ → NO + I₂ + H₂O

11.2-16. Ułożyć równania reakcji (i dobrać współczynniki):
a) w reakcji kwasu azotowego(V) o średnim stężeniu z miedzią tworzy się bezbarwny gaz brunatniejący na powietrzu.
b) podczas działania kwasu azotowego(V) na rtęć powstaje sól rtęci dwuwartościowej i wydziela się bezbarwny gaz brunatniejący na powietrzu.
c) w reakcji cynku ze stężonym kwasem azotowym(V) wydziela się tlenek azotu(I) (N₂O).

11.2-17. Dobrać współczynniki stehiometryczne w równaniach:
a) Cr₂O₇²⁻ + 3CH₃OH + H⁺ → Cr³⁺ + HCHO + H₂O
b) Cr₂O₇²⁻ + CH₃CH₂OH + H⁺ → Cr³⁺ + CH₃CHO + H₂O
c) KMnO₄ + H₂C=CH₂ + H₂O → HO-CH₂-CH₂-OH + KOH + MnO₂
d) KMnO₄ + H₂C=CH₂ + H₂SO₄ → HO-CH₂-CH₂-OH + MnSO₄ + K₂SO₄

11.2-18. Stężony roztwór kwasu azotowego(V) ma tak silne właściwości utleniające, że zanurzony w nim rozżarzony kawałek siarki zapala się. Zachodzi wówczas reakcja opisana schematem HNO₃ + S → H₂O + NO + SO₂. Ułóż bilans elektronowy, dobierz współczynniki w równaniu reakcji, a następnie, wskaz utleniacz i reduktor.
12. Układ okresowy pierwiastków

12.1. Różne reakcje

12.1.1.
Jaki powinien być wzór tlenku na najwyższym stopniu utlenienia: jodu, bizmutu, selenu, boru, cezu i cyny?

12.1.2.
Pierwiastek E tworzy jodek o wzorze EI₃ i chlorek o wzorze ECl₃. Z 0,85g jodku w reakcji
2EI₃ + 3Cl₂ → 2ECl₃ + 3I₂
otrzymano 0,38g chlorku.
a) Oblicz masę atomową pierwiastka E
b) Napisz nazwę i symbol pierwiastka E

12.1.3.

12.1.4.

12.1.5.
Zapisz cząsteczkowo, jonowo i w sposób skrócony równania:
a) reakcji zobojętniania kwasu siarkowego(VI) wodorotlenkiem potasu
b) reakcji między azotanem V srebra a chłorkiem sodu: zaznacz wytrącający się osad.

12.1.6.
Oblicz wartości x i y. Odczytaj równania reakcji:
a) PbₓOᵧ + 4H₂ → 3Pb+4H₂O
b) 2CrₓOᵧ+3C → 2Cr+3CO₂

12.2. Litowce

12.3. Berylowce

12.3.1.
Określ charakter chemiczny tlenku magnezu i tlenku fosforu(V). Napisz reakcje,jakim ulegają te tlenki.

12.3.2.
Napisz dwie reakcje otrzymywania tlenku wapnia.

12.4. Borowce
12.5. Węglowce

12.5-1.
W reakcji pary wodnej z 10^3 kg rozżarzonego koksu, zawierającego 90% węgla, otrzymano 1600 m³ wodoru (warunki normalne). Obliczyć procentową wydajność reakcji.

12.5-2.
Ułożyć równania reakcji ilustrujące proces wyodrębniania wodoru z gazu syntezowego (mieszanka H2 + CO)
12.5.3.
Wyjaśnić, co oznaczają następujące określenia:
- kwas krzemowy jest związkiem trudno rozpuszczalnym w wodzie,
- kwas krzemowy jest słabym elektrolitem
- kwas krzemowy jest związkiem nietrwałym,
- sole kwasu krzemowego ulegają hydrolyzic.

12.5.4.
W siedmiu próbkach znajdują się roztwory: \(\text{Na}_2\text{CO}_3 \) (węglan sodu), \(\text{NaNO}_3 \) (azotan sodu), \(\text{Na}_2\text{S} \) (siarczek sodu) i \(\text{NaCl} \) oraz \(\text{CO}_2 \), wodór, \(\text{CO}_2 \). Jak je rozróżnić?

12.5.5.
Wyjaśnić, dlaczego węglany nierozpuszczalne w wodzie rozpuszczają się w roztworach kwaśnych.

12.5.6.
Ułożyć równania reakcji, za pomocą których można dokonać następujących przemian:
\(\text{C} \rightarrow \text{CO} \rightarrow \text{CO}_2 \rightarrow \text{NaHCO}_3 \rightarrow \text{Na}_2\text{CO}_3 \rightarrow \text{CO}_2 \)
Przypadku reakcji przebiegających pomiędzy jonami podać równanie w formie jonowej.

12.5.7.

12.5.8.
Podczas przepuszczania dwutlenku węgla przez wodę wapienną, najpierw następuje zmętnienie, a następnie jego zanik. Wyjaśnić te zjawiska równaniami reakcji.

12.5.9.
Jaki otrzymać kwas krzemowy z krzemionki? Ułożyć równanie reakcji, opisać czynności eksperymentalne, proponując konkretnie ilości potrzebnych substancji (dla roztworów również stężenia) niezbędnych do otrzymania około 0,1 mola produktu.

12.5.10.
Tak zwane szkło zwykłe zawiera 13% tlenu sodu, 11,7% tlenu wapnia i 75,3% dwutlenku krzemu. Ustalić wzór tlenkowy szkła.

12.5.11.
Krzem można otrzymać, przepuszczając pary fluorku krzemu nad ogrzanym potasem. Ułożyć równanie reakcji i obliczyć objętość fluorku krzemu (warunki normalne) potrzebną do otrzymania 2 moli krzemu.

12.5.12.
Obliczyć objętość 50-procentowego kwasu fluorowodorowego (d=1,5g/cm\(^3\)), potrzebną do przeprowadzenia 6g dwutlenku krzemu w czterofluorek krzemu.

12.5.13.
5 g dwutlenku krzemu wrazono do stężonego roztworu, zawierającego 6g kwasu fluorowodorowego. Ile dm\(^3\) czterofluoreku krzemu (warunki normalne) wydzieli się podczas doświadczenia?

12.5.14.
Obliczyć, ile dm\(^3\) dwutlenku węgla (warunki normalne) należy wprowadzić do 100cm\(^3\) 0,5-molowego roztworu krzemianu sodu, aby całkowicie wytrącić kwas krzemowy.

12.5.15.
Ile moli dwutlenku węgla można otrzymać z m gramów mieszaniny tlenu węgla i tlenu zawierającej P\(_0\) procent masowych tlenu?

12.5.16.
Po wyprażeniu 2g metalu powstało 2,539g tlenku, w którym metal jest na czwartym stopniu utlenienia. Podaj jaki to metal.
12.6. Azotowce

12.6.1. Ustal wzór sumaryczny soli o nazwie azotan(V) magnezu i napisz sześć reakcji otrzymywania tej soli.

12.6.2. Napisz wzór sumaryczny, strukturalny kwasu fosforowego(V) oraz reakcję otrzymywania tego kwasu z odpowiedniego tlenku.
CHEMIA ORGANICZNA

13. Węglowodory

13.1. Węglowodory nasycone (alkany)

13.1.1. Wyprowadź wzór sumaryczny węglowodoru nasyconego wiedząc ze %C=80% a gęstość węglowodoru w warunkach normalnych wynosi 1,339 g/dm3. Narysuj wzór strukturalny tego związku.

13.1.2. Napisz, który z węglowodorów o wzorach C$_2$H$_6$, C$_{16}$H$_{34}$:
 a) ma największą gęstość
 b) jest łatwiej zapalny
 c) ma wyższą temperaturę wrzenia

13.1.3. Ułożyć ogólné równanie reakcji spalania węglowodoru C$_n$H$_{2n+2}$ zakładając, że produktem spalania jest:
 a) dwutlenek węgla (tlenek węgla(IV))
 b) tlenek węgla (tlenek węgla(II))
 c) sadza

13.1.4. Jakie związki powstają podczas działaniachloru na propan, jeżeli mol chloru reaguje z molem propanu?

13.1.5. Ile trzeciorzędowych atomów wodoru zawiera:
 a) izobutan
 b) 2-metylobutan
 c) neopentan

13.1.6. Ustalić wzór sumaryczny monobromopochodnej alkanu, wiedząc, że jej masa cząsteczkowa wynosi 151u.

13.1.7. Metan można otrzymać w reakcji węgliku glinu z kwasem solnym lub z wodą. Którą z tych reakcji należy zrealizować, chcąc otrzymać najwięcej metanu, mając do dyspozycji m gramów węgliku glinu.

13.1.9. Do spalenia 2,24 dm3 węglowodoru X zużyto 11,2 dm3 tlenu i otrzymano 6,72 dm3 tlenku węgla(IV) oraz wodę. Pomiary wykonano w tych samych warunkach ciśnienia i temperatury. Podaj nazwę węglowodoru X.

13.1.10. Który z izomerów C$_3$H$_{12}$ tworzy tylko jedną monochloropochodną?

13.1.11. Po całkowitym spaleniu 7,0 g związku organicznego o masie molowej 42 g/mol otrzymano 11,2 dm3 dütlenku węgla w przechciuaniu na warunki normalne, oraz parę wodną, która po skropleniu ważyła 9,0 g. Ustalić wzór elementarny i rzeczywisty tego związku.

Uloż równanie reakcji otrzymywania
a) butanu z etanolu korzystając z dowolnych odczynników nieorganicznych
b) 2,2-chloropropanu z 1,2-dibromopropanu.

Ile moli, dm3, gramów tlenu potrzeba do całkowitego spalenia 342g benzyny zakładając, że jest ona czystym oktanem (warunki normalne)

Przyjmując, że w benzynie na 4 cząsteczkę heksanu przypada 1 cząsteczkę heptanu i 2 cząsteczki oktanu, oblicz stosunek liczby cząsteczek CO$_2$ do liczby cząsteczek H$_2$O w produktach całkowitego spalania tej benzyny

13.1-16.
W wyniku spalenia 11,4g alkanu otrzymano 17,92dm3 CO$_2$ odmierzonego w warunkach normalnych. Ustal wzór sumaryczny tego węglowodoru, zapisz reakcje spalania całkowitego i niecałkowitego oraz wzory strukturalne 5-ciu jego izomerów.

13.1-17.
Oblicz rzeczywisty wzór węglowodoru o masie molowej 30g/mol, jeżeli w relacji spalania 1,50g tego związku otrzymano 4,4g CO$_2$ i parę wodną.

Stosunek mas dwóch kolejnych alkanów w szeregu homologicznym wynosi 1:1,14. Ustal wzory sumaryczne tych alkanów.

Do spalenia 40 dm3 mieszaniny metanu i propanu do tlenku węgła(IV) i wody zużyto 170 dm3 tlenu. Oblicz skład mieszaniny węglowodorów w procentach objętościowych.

Obliczyć w jakim stosunku molowym zmieszano etan i propan jeżeli do całkowitego spalenia 7dm3 tej mieszaniny zużyto 32dm3 tlenu otrzymując CO$_2$ i parę wodną. Podane objętości odnoszą się do identycznych warunków ciśnienia i temperatury.

Spalono 0,5 litra pewnego węglowodoru i otrzymano 2dm3 dwutlenku węgła oraz 2,009g wody. Jeden dm3 jednchlorowcopochodnej tego węglowodoru posiada masę 4,129g (gęstość chlorowcopochodnej tego węglowodoru w stosunku do powietrza wynosi 3,19, objętość podano w przeliczeniu na warunki normalne).
a) podaj skład procentowy tego węglowodoru
b) wyprowadź wzór uproszczony tego węglowodoru
c) wyprowadź wzór rzeczywisty
d) czy otrzymany węglowodór posiada izomery?

W syntezie Wurtza otrzymano 3 alkany. Wiedząc, że dwa z nich to butan i 2,3-dimetylopetan, napisać wzór i podać nazwę trzeciego węglowodoru.

13.1-23.
10 cm3 pewnego węglowodoru spalono zużywając 35cm3 tlenu. Po skropleniu powstającej pary wodnej pozostało 30cm3 gazu, którego objętość po przepuszczeniu przez wodny roztwór NaOH nie uległa zmianie. Objętość mierzono w temperaturze 295K pod normalnym ciśnieniem. Ustalić wzór węglowodoru.

Napisz ile izomerów może powstać w wyniku każdej z poniższych reakcji, wiedząc, że gazowe substraty zmieszano w stosunku objętościowym 1:1
a) propan + Br$_2$ ↔
b) metylopropan +Cl$_2$ ↔
c) chloroetan + Cl$_2$ ↔
Reakcje redoks

Narysuj związek zawierający jeden IV-rzędu atom węgla, jeden III-rzędu oraz trzy II-rzędowe atomy węgla. Podaj liczbę pierwszorzęduowych atomów węgla oraz nazwę tego związku. Wiedząc, że izomer to związek o tym samym wzorze sumarycznym a innym strukturalnym, narysuj 2 dowolne izomery tego związku i nazwij je, oraz określ rzędowość atomów węgla w tych związkach.

Podaj wzór dowolnego węglowodoru posiadającego jedno wiązanie potrójne oraz taka samą liczbę atomów wodoru co związek wyjściowy, a następnie podaj jego nazwę, określ rzędowość atomów węgla i podaj dwa wzory jego izomerów i nazwij je.

Napisz reakcje wszystkich powyższych związków z dowolnym fluorowcem, wodą, wodorem cząsteczkowym, fluorcowodorem, manganianem(VII) potasu. Podaj nazwy powstałych produktów lub zaznacz ze reakcja nie zachodzi.

Narysuj wszystkie izomery alkanu o wzorze sumarycznym C_7H_{16}. Podaj nazwy tych izomerów.

13.1-29.
Uzgodnij równanie reakcji spalania całkowitego alkanu:
C_{n}H_{2n+2} +O_2 →CO_2 +H_2O

Korzystając z rozwiązania z poprzedniego zadania, narysuj wykres ilustrujący zależność między liczbą atomów węgla w cząsteczce alkanu (oś 0X), a liczbą cząsteczek tlenu potrzebną do spalenia 1 cząsteczki alkanu (oś 0Y). Na wykresie zaznacz te punkty, które mają sens chemiczny.

Korzystając z wykresu z poprzedniego zadania odczytaj, ile cząsteczek tlenu potrzeba do spalenia całkowitego:
a) 1 cząsteczki etanu
b) 1 cząsteczki butanu
c) 1 cząsteczki pentanu
d) 1 cząsteczki oktanu

13.1-32.
Napisz reakcję chlorowania 2-metylobutanu i wyjaśnij przyczynę powstawania konkretnych produktów.

13.1-33.
Jakie produkty powstają w wyniku monochlorowania 2-metylobutanu? Przedstaw mechanizm tej reakcji.

13.1-34.
Stosując wzory półstrukturalne ułóż równania reakcji chlorowania etanu i propanu. Nazwij wszystkie możliwe produkty reakcji.

13.1-35.
Jakie węglowodory powstają w wyniku reakcji metalicznego sodu z bromometanem oraz mieszaniną bromometanu i bromoetanu? Napisz równania zachodzących reakcji.

13.1-36.
Ustal wzór tetrachloropochodnej alkanu o masie molowej 168g/mol. Podaj nazwę tego związku.
13.2. Węglowodory nienasycone (alkeny i alkiny)

13.2.1. Narysuj wzór polimeru, zawierający trzy mery, który powstaje z \(\text{CH}_2\text{=CH-Cl} \). Podaj nazwę tego polimeru.

13.2.2. Podać treść i przykłady zastosowania regul Markownikowa i Zajcewa (zapisując równania reakcji posługując się wzorami grupowymi).

13.2.3. Jak stwierdzić, czy badana substancja jest węglikiem glinu czy karbidelem?

13.2.4. Pewien węglowodór, homolog etynu, spalony całkowicie w tlenie, przy czym zużyto objętość tlenu siedmiokrotnie większą niż objętość par spalanego węglowodoru. Ustal wzór sumaryczny węglowodoru.

13.2.5. Ustal wzór sumaryczny węglowodoru należącego do szeregu homologicznego alkinów, wiedząc, że zawiera on masowo 11,1% wodoru, a gęstość par tego związku w warunkach normalnych jest równa 2,41 g/dm³.

13.2.6. Ułożyć równania reakcji, za pomocą których można dokonać następujących przemian:

a) \[
\begin{array}{c}
\text{C=C} \\
\text{H H}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{H-C=C} \\
\text{H H Br Br}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{H-C=C} \\
\text{H H Br Br}
\end{array}
\]

b) \[
\begin{array}{c}
\text{H-C≡C} \\
\text{H H}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{C=C} \\
\text{H H}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{H-C-C} \\
\text{H H}
\end{array}
\]

c) \[
\begin{array}{c}
\text{H-C≡C-H} \\
\text{Br Br}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{C=C} \\
\text{H H}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{H-C} \\
\text{H H Br Br}
\end{array}
\overset{?}{\rightarrow}
\begin{array}{c}
\text{Br-C} \\
\text{C-C-Br}
\end{array}
\]

13.2.7. Pewien węglowodór reaguje w ciemności z chlorem, w wyniku czego powstaje tetrachloropochodna o masie stanowiącej 455% masy wyjściowego węglowodoru. Ustal wzór strukturalny tego węglowodoru.

13.2.8. 250 cm³ mieszaniny propanu i propenu przepuszczone przez wodny roztwór bromu. Objętość gazu zmniejszyła się do 175 cm³. Oblicz procentowy skład objętościowy początkowej mieszaniny gazu.

13.2.9. Stosunek masowy alkenów w szeregu homologicznym wynosi 1:0,89 ustal ich wzory sumaryczne. Czy alkeny różnią się o masę grupy CH₂?

13.2.10. Napisz stosując wzory półstrukturalne równanie reakcji addycji i równanie reakcji substytucji, których produktem będzie chloroetan.

13.2.11. Pewien węglowodór nienasycony tworzy, po przepuszczeniu przez wodę bromową, produkt zawierający 85,09% masowych bromu. Próbka badanego związku daje po spaleniu 1,1 g tlenku węgla (IV) i 0,45 g wody. Narysuj wzór półstrukturalny i podaj nazwę tego węglowodoru.

13.2.15. Dla cząsteczki alkanu, cykloalkanu, alkenu i alkinu zawierających 5 atomów węgla:
 a) zapisz ich wzory sumaryczne
 b) narysuj wzory półstrukturalne wszystkich możliwych izomerów
 c) dla tych izomerów utwórz nazwy systematyczne
 d) dla każdego z izomerów określ rodzaj izomerii.

13.2.16. Zapisz poniższe równania reakcji chemicznych, produkтом nadaj nazwy systematyczne i określ typ reakcji:
 a) propen + woda
 b) propen + wodór
 c) propyn + bromowodór
 d) propyn + tlen (różna dostępność tlenu)
 e) propan + chlor
 f) eten + eten

13.2.17. Do końca poniższe równania reakcji i podpisz reagenty:
 a) CH₃-CH=CH₂ + Br₂ →
 b) CH₃-CH₂-CH₃ + O₂ →

13.2.18. Masa podgrzewanego polietylenu na skutek depolimeryzacji zmniejszyła się o 140mg. Oblicz, jaką objętość etenu otrzymano (warunki normalne).

13.2.19. Badano reakcję dwóch izomerów C₆H₁₀ z bromem. Próbka pierwszego odbarwiła 137cm³ 5% roztworu bromu. Identyczna próbka drugiego odbarwiła 274cm³ 5%r-ru bromu. Podaj po dwa przykłady związków, które mogą być pierwszym i drugim izomerem C₆H₁₀.

13.2.20. Oblicz procentowy skład masowy i objętościowy mieszaniny C₂H₂ i C₂H₄ jeżeli do spalenia 4dm³ tej mieszaniny zużyto 11dm³ tlenu otrzymując CO₂ i H₂O. Pomiarów objętości dokonano w temp 291K pod ciśnieniem 296hPa.

13.2.21. 10cm³ gazowego węglowodoru zmieszano z 70cm³ tlenu i mieszając zapalono. Po zakończeniu reakcji i skropleniu pary wodnej objętość gazów wynosiła 50cm³ a po przepuszczeniu przez wodny roztwór KOH, zmniejszyła się do 10cm³. Wszystkie objętości mierzone w tych samych warunkach ciśnienia i temperatury. Ustal wzór sumaryczny węglowodoru.

13.2.22. 40cm³ pewnego węglowodoru spalono zużywając 180cm³ tlenu. Po skropleniu powstającej pary wodnej pozostało 120cm³ gazu, który po przepuszczeniu przez roztwór KOH został całkowicie pochłonięty. Objętości mierzone w tych samych warunkach ciśnienia i temperatury. Ustal wzór sumaryczny węglowodoru.

13.2.25.
Uzupełnij równania reakcji i podaj nazwy produktów. Określ typ reakcji chemicznej:

a) \(\text{C}_4\text{H}_{10} + \text{Cl}_2 \rightarrow \)

b) \(\text{C}_3\text{H}_6 + \text{HBr} \rightarrow \)

c) \(\text{C}_2\text{H}_2 + \text{Br}_2 \rightarrow \)

d) Benzen + HNO_3 →

Równania zapisz w postaci strukturalnej lub półstrukturalnej.

13.2.26.
Wyjaśnij na przykładach różnicę pomiędzy reakcją podstawiania a przyłączania.

13.2.27.
Napisz poniższe reakcje wykorzystując wzory półstrukturalne i podaj nazwy odpowiednich produktów lub substratów:

a) spalanie częściowe 2,2-dimetylopropanu
b) bromowania 2,3-dimetylobut-1-enu
c) otrzymywanie 1,2-dichloropropanu w odpowiedniej reakcji addycji
d) otrzymywanie 3-jodo-2,2,3,4,4-pentametylopentanu

13.2.28.
Napisz równania reakcji, za których pomocą można dokonać następujących przemian:

a) propyn → propen → propan

b) butyn → dichlorobuten → tetrachlorobutany

13.2.29.
Dehydrohalogenacja 2-bromobutanu wodorotlenkiem potasu w alkoholu etylowym daje mieszaninę 2 produktów (alenów), tj. but-2-enu i but-1-enu. Który produkt dominuje w mieszaninie pireakcyjnej?

13.2.30.
Narysuj wzór polimeru, zawierający trzy mery, który powstaje z CH2=CH-Cl. Podaj nazwę tego polimeru.

13.2.31.
Za pomocą równań reakcji przedstaw następujące przemiany chemiczne:

\[
\text{CaC}_2 + \text{H}_2\text{O} \rightarrow \text{A} \xrightarrow{\text{H}_2\text{kat.}} \text{B} \xrightarrow{\text{Br}_2} \text{D} \xrightarrow{\text{Zn}} \text{B}
\]

13.2.32.
Wyjaśnij różnice w reakcjach polimeryzacji i polikondensacji, różnice te ilustruj na dowolnie wybranych przykładach.

13.2.33.
Podaj wzór homologu etynu, którego 6,02 \(\times 10^{23} \) cząsteczek ma masę o 140g większa od 1 mola cząsteczek propynu.

13.2.34.
Napisz równania reakcji spalania niecałkowitego alkanu o 5 atomach węgla, półspalania metanu, spalania całkowitego alkinu o 10 atomach wodoru cząsteczce.

13.2.35.
Napisz równanie reakcji przyłączania chloru do etynu.

13.2.36.
Napisz równanie reakcji przyłączania wodoru do etenu.

13.2.37.
Ułoż równania reakcji.

etenu z bromem

propynu z chlorek tak aby produktem był związek nasycony.
13.3. Węglowodory aromatyczne

13.3.1.
Ułóż równanie reakcji benzenu z chlorem w obecności chlorku żelaza(III) i napisz nazwę produktu oraz jak, nazywa się tego typu reakcja.

13.3.2.
Za pomocą równań reakcji zilustrow przemiany zaznaczone na poniższym schemacie (podać wzory grupowe, typy reakcji i nazwy reagentów):
etan → chlorek etylu → eten → etyn → benzen

13.3.3.
Oblicz ile dm³ tlenu potrzeba do całkowitego spalenia 885g mieszaniny benzenu i toluenu zmieszanych w stosunku molowym 1:3.

13.3.4.
Uzupełnij i zbilansuj następujące równania reakcji:
a) …………. + O₂ → 3CO₂ + 4H₂O
b) propan + Br₂ (światło) → ……………. + ……………. + …………….
c) CH₃-CH₂-CH=CH₂ + HBr →
d) but-2-yn + chlorowodór →
e) tolen + Br₂ (światło) →

13.3.5.
Biorąc pod uwagę wpływ skierowujący podstawników napisać równania reakcji sulfonowania:
a) m-chlorotoluenu
b) kwas p-metylobenzośowego
Określić i nazwać główny(e) produkt(y) tych reakcji.

13.3.6.
Przeprowadzono bromowanie i nitrowanie benzenu na dwa sposoby:
I najpierw bromowanie a następnie nitrowanie powstałego produktu
II najpierw nitrowanie a następnie bromowanie powstałego produktu
Jakie produkty otrzymano w obydwu przypadkach?

13.3.7.
Podaj wzory strukturalne 3 izomerów benzenu nie zawierających pierścienia

13.3.8.
W reakcji chlorowania toluenu w obecności Fe powstaje mieszanina zawierająca 10% masowych o-chlorotoluenu i 90% wagowych p-chlorotoluenu. Ile moli izomeru orto i ile para otrzymamy, jeżeli do reakcji użyjemy 1 mola toluenu

13.3.9.
W procesie reformingu cząsteczki n-heksanu ulegają przemianie w cząsteczki benzenu. Ułóż równanie reakcji

13.3.10.
W jakim przypadku moment dipolowy izomeru para jest równy 0, a w jakim moment dipolowy izomeru orto jest:
a) mniejszy
b) większy od momentu dipolowego izomeru para

13.3.11.
Na czym polega charakter aromatyczny benzenu.

13.3.12.
Wychodząc z benzenu i dowolnych odczynników nieorganicznych zaproponuj sposób otrzymywania m-dinitrobenzenu oraz kwasu m-bromobenzośowego.
14. Alkohole

14.1.1.
Podaj mechanizm reakcji dowolnego 3-rzędugo alkoholu z odczynnikiem Lucasa.

14.1.2.
Do podanego schematu ułożyć odpowiednie reakcje chemiczne:

\[
\begin{align*}
\text{CH}_4 + \text{Cl}_2 & \rightarrow \text{A} \\
\text{A} + \text{KOH} & \rightarrow \text{B} \\
\text{B} + \text{Na} & \rightarrow \text{C} \\
\text{C} + \text{H}_2\text{O} & \rightarrow \text{D}
\end{align*}
\]

14.1.3.
Podaj wzór sumaryczny alkoholu monohydroksylowego zawierającego wagowo 64,9% węgla i 13,5% wodoru.

14.1.4.
Wyznacz wzór sumaryczny alkoholu monohydroksylowego, jeżeli wiesz, że do całkowitego spalenia 0,1 mola tego związku zużyto 16,8 dm³ tlenu (w warunkach normalnych), otrzymując 10,8 g wody. Podaj wzory półstrukturalne trzech dowolnych izomerów tego związku oraz ich nazwy.

14.1.5.
W miejscu liter A,B,C wstaw odpowiednie wzory strukturalne i nazwy związków chemicznych. Przedstaw równania reakcji zaznaczone strzałkami.

14.1.6.
Za pomocą równań reakcji przedstaw następujące przemiany ilustrujące metody otrzymywania etanolu z karbidu, podaj nazwy związków A, B, D oraz X:

\[
\begin{align*}
\text{CaC}_2 & \rightarrow \text{A} \\
\text{A} & \rightarrow \text{B} \\
\text{B} & \rightarrow \text{D} \\
\text{X} & \rightarrow \text{D}
\end{align*}
\]

14.1.7.
Ustal masę molową i wzór n-alkanolu widząc, że w reakcji 9g tego związku z sodem wydziela się 1,68dm³ wodoru (warunki normalne).

14.1.8.
Ułożyć równania kolejnych reakcji które należy przeprowadzić aby otrzymać glikol etylenowy mając do dyspozycji octan etylu i dowolne odczynniki nieorganiczne.

14.1.9.
Zapisz równania reakcji przedstawionych poniższymi schematami:

a) propan → 1-chloropropan →propan-1-ol →propan-1-olan potasu
b) benzen → nitrobenzen → bromonitrobenzen

14.1.10.
Jaki odczyn posiadają wodne roztwory alkoholi i fenoli. Odpowiedź uzasadnij.

14.1.11.
Dla cząsteczki pentanolu:

a)zapisz równanie reakcji spalania
b)zapisz wszelkie możliwe jego izomery wynikające z położenia grupy funkcjonalnej(hydroksylowarzowej-OH)
c)dlę tych izomerów utwórz nazwy systematyczne i określ ich rzędowość
d)zapisz równania katalitycznego utleniania tych izomerów, dla produktów utlenienia utwórz nazwy systematyczne.
14.1.12.
Ułoż wzory i nazwy systematyczne alkoholi o wzorze sumarycznym C_3H_7OH. Określ rzędowość tych alkoholi oraz napisz równania reakcji utleniania butan-1-olu i butan-2-olu.

W wyniku reakcji 1 mola alkenu z 1 molem wody powstał związek o masie molowej o 64,28% większej od masy alkenu. Podaj wzór tego alkenu.

W wyniku całkowitego spalenia 4,5g alkolu polihydroksylowego otrzymano 4,48dm3 CO$_2$ (odmierzonego w warunkach normalnych) i 4,5g wody. Ustal wzór sumaryczny tego alkolu, jeżeli jego masa molowa wynosi 90g/mol.

14.1.15.
Wyznacz wzór sumaryczny alkoholu monohydroksylowego, jeżeli wiesz, że do całkowitego spalenia 0,1mola tego związku zużyto 16,8dm3 tlenu (w warunkach normalnych), otrzymując 10,8g wody. Podaj wzory półstrukturalne trzech dowolnych izomerów tego związku oraz ich nazwy.

14.1.16.
Zapisz cykl równań, które doprowadzą do otrzymania etanolu z etanu.

14.1.17.
Wyjaśnij dlaczego w wyniku addycji wody do propenu w obecności H$_2$SO$_4$ jako główny produkt powstaje propan-2-ol?

14.1.18.
Wyjaśnij mechanizm reakcji przemiany 2-metylobutan-2-olu w 2-metylobut-2-en.

14.1.19.
Wyjaśnij mechanizm przyłączenia alkoholu etylowego do etanalu w środowisku kwaśnym.

14.1.20.
Stosując wzory półstrukturalne ułożyć równania reakcji przedstawione na schemacie:

etanol \rightarrow eten \rightarrow 1,2-dichloroetan \rightarrow glikol \rightarrow glikolan potasu

14.1.21.
Podaj nazwę i ustal rzędowość alkoholi:

a) CH_3\text{C}$$\text{C}$\text{H}_2$$\text{C}$\text{H}_2$$\text{OH}$

b) OH\text{C}C\text{CH}_2$$\text{C}CH_3

\text{CH}_3$

\text{CH}_3$

c) $\text{H}_3$$\text{C}C\text{C}$\text{H}_2$$\text{C}H_3

\text{OH}$

14.1.22.
Zapisz reakcje utleniania:

Butan-1-olu

Butan-2-olu
15. Aldehydy, ketony

15.1.1.
Za pomocą równań reakcji przedstaw przemiany zaznaczone na poniższym schemacie:

\[
\begin{align*}
&\text{H} - \text{C} = \text{C} - \text{H} \\
&\text{H}_2 \\
&\text{A} \rightarrow \text{H}_2 \text{C} = \text{C} - \text{H} \\
&\text{H}_3 \text{C} - \text{C} \text{O} \\
&\text{D} \\
&\text{H}_3 \text{C} - \text{C} \text{H} \\
&\text{CuO} \\
&\text{H}_2 \text{O} \text{KOH} \\
&\text{B} \rightarrow \\
&\text{C} \\
&\text{B} \\
&\text{KOH/H}_2 \text{O} \\
&\text{A} \\
&\text{HCl} \\
\end{align*}
\]

15.1.2.
Tlenkiem srebra podziałano na 2,4 g pewnego alkanalu. Otrzymano 8,94 g metalicznego srebra. Ustal wzór tego alkanalu.

15.1.3.
Oblicz, ile gramów srebra powstanie podczas redukcji 7,5 grama metanaldu użytego w próbie Tollensa.

15.1.4.
Za pomocą równań reakcji przedstaw następujące przemiany chemiczne:

\[
\begin{align*}
&\text{H}_2 \text{C} = \text{C} - \text{CH}_2 \text{CH}_3 \\
&\text{HCl} \\
&\text{A} \rightarrow \\
&\text{KOH/H}_2 \text{O} \\
&\text{B} \\
&\text{CuO} \\
&\text{D} \\
\end{align*}
\]

Podaj nazwy związków A, B oraz D.

15.1.5.
Za pomocą równań reakcji przedstaw przebieg próby Tollensa i próby Trommera dla etanaldu (aldehydu octowego).

15.1.6.
Za pomocą równań reakcji przedstaw następujące przemiany chemiczne:

\[
\begin{align*}
&\text{CH}_2 = \text{CH} - \text{CH}_2 - \text{CH}_3 \\
&\text{HCl} \\
&\text{A} \rightarrow \\
&\text{KOH/H}_2 \text{O} \\
&\text{B} \\
&\text{CuO} \\
&\text{D} \\
\end{align*}
\]

Podaj nazwy związków A, B, i D.

15.1.7.
Ułóż równania reakcji odpowiadające następującym przemianom chemicznym: propanal → propanol
16. Kwasy karboksylowe

16.1-1.
Zobojętniono 4 g kwasu dikarboksylowego za pomocą 30,8 cm³ 2,5 -molowego roztworu NaOH. Podaj wzór strukturalny i nazwę tego kwasu.

Reakcja kwasu p-aminobenzoesowego z a) HCl, b) KOH, c) Na₂CO₃

16.1-3.
W wyniku reakcji 11 g kwasu monokarboksylowego z magnezem otrzymano 1,4 dm³ wodoru (w warunkach normalne). Ustalić wzór sumaryczny kwasu.

Za pomocą równań reakcji przedstaw przemiany ilustrujące trzy różne metody otrzymywania kwasu octowego. Podaj nazwy związków A, B, X, Y, Z, W oraz związku D.

16.1-5.
Napisz równania reakcji pozwalające na przeprowadzenie następujących przemian.
 a) CH₄ → CH₃-CH₂ → CH₃-CH₂-OH → CH₃-CH₂Cl
 b) CH₃-CH₂-OH → CH₂=CH₂ → CH₃-CH₃ → CH₃-CH₂-Cl → CH₃-COOH

16.1-6.
Napisz cykl reakcji prowadzących od etanu do kwasu octowego(etanowego). Napisz te równania i podaj nazwy wszystkich zastosowanych związków organicznych.

Zaproponuj 3 metody otrzymywania (C₂H₅COO)₂Ca, oraz napisz reakcję dysocjacji tej soli.

Zapisz równania reakcji i nazwij produkty reakcji:
 a) kwasu masłowego w wodorotlenkiem magnezu
 b) kwasu octowego z tlenkiem wapnia

Uwodniony kwas organiczny zawierający 2 grupy karboksylowe ma następujący skład procentowy: C: 19,04%, H: 4,77%, O: 76,19%. Wyprowadzić wzór tego kwasu.

16.1-10.
Podaj wzór sumaryczny i nazwę kwasu karboksylowego, którego masa cząsteczkowa wynosi 130 u.

16.1-11.
Ułożyć równania reakcji odpowiadające następującym przemianom chemicznym: etanol → etanal → kwas octowy

16.1-12.
Ułożyć równani reakcji, za których pomocą można dokonać następujących przemian:
 metanol → metanal → kwas metanowy → mrówczan wapnia
16.1-13. Ułożyć równania reakcji:
a) otrzymywania mrowczanu potasu
b) otrzymywania octanu glinu

16.1-14. Ułożyć równania reakcji odpowiadające następującym przemianom chemicznym:
a) etanol → etanal → kwas octowy
b) propanal → propanol

17. Nitrozwiązki i aminy

17.1-1.
Oblicz masę cynku i roztworu kwasu chlorowodorowego o stężeniu 36% potrzebnych do zredukowania 0,15 mola nitrobenzenu.
18. **Tłuszcze i estry**

18.1-1.
5 g kwasu salicylowego poddano reakcji z 7 cm³ bezwodnika octowego (d=1,08 g/cm³) uzyskując 5,1 g aspiryny. Napisz równanie reakcji i oblicz jej wydajność.

18.1-2.
Z jakiej ilości kwasu salicylowego i bezwodnika octowego należy wyjść aby w reakcji otrzymywania aspiryny zachodzącej z wydajnością 73% uzyskać 8 g produktu. Napisz równanie zachodzącej reakcji.

18.1-3.
10 g mieszaniny salicylanu metylu i benzoesanu metylu hydrolizowano 0,6 dm³ 0,2-molowego roztworu KOH. Hydroliza przebiegała praktycznie do końca, a nadmiar wodorotlenku zobojętniono 0,2 dm³ 0,1-molowego roztworu kwasu solnego. Określ skład mieszaniny w procentach masowych i molowych.

18.1-4.
W reakcji hydrolizy tłuszczu (glicerydu) otrzymano 128 g kwasu palmitynowego i 71 g kwasu stearynowego. Ustalić wzór tłuszczu.

18.1-5.
Produktami hydrolizy pewnego estru są: kwas A i alkohol B. Sól wapniowa kwasu A zawiera 30,8 %wapnia, a produktem utlenienia alkoholu B jest kwas identyczny z kwasem A. Podać wzór grupowy i nazwę tego estru.

18.1-6.
Ułożyć schemat przemian, które należy przeprowadzić w celu otrzymywania octanu etylu mając do dyspozycji karbid i dowolne odczynniki nieorganiczne.

18.1-7.
Tłuszczy A to tłuszcz o masie cząsteczkowej równej M=834g/mol. Skład procentowy węgla i tlenu przedstawia się następująco: %C=ok. 76,26%; %O=ok. 11,51%
Tłuszcz ten nie ulega reakcji utwardzenia, nie odbarwia też wody bromowej ani roztworu KMnO₄
1. Zidentyfikuj tłuszcz A, wykonując niezbędne obliczenia. Zapisz wzór sumaryczny i półstrukturalny tego tłuszczu, nazwij go 2. wyjaśnij jakiej konsystencji jest tłuszcz A.
3. Zapisz reakcje zmydlania tego tłuszczu, mając na uwadze, iż najważniejszym produktem tej reakcji maja być tutaj mydła o płynnej konsystencji.
4. Dlaczego tłuszcz ten nie ulega reakcji utwardzenia?
5. Oblicz ile m³ tlenu potrzeba, aby w reakcji spalania tego tłuszczu otrzymać 2,5kg H₂O.

18.1-8.
W cząsteczce tłuszczu znajdują się jedna reszta glicerolu i po jednej reszcie kwasów: oleinowego, palmitynowego, linolowego. Zapisz wzory półstrukturalne wszystkich możliwych cząsteczek tego tłuszczu. Oblicz, jaką objętość w warkach normalnych zajmie wodór potrzebny do całkowitego utwardzenia (wysycenia) 214 gramów tego tłuszczu przyjmując, że reakcja przebiegnie z 50% wydajnością.

Ułożyć równania kolejnych reakcji które należy przeprowadzić aby otrzymać dioctan glikolu etylowego mając do dyspozycji etylen i dowolne odczynniki nieorganiczne.

18.1-10.
100g mieszaniny tristearynianu i trioleinianu glicerolu reaguje z 42g jodu. Ile procent masowych trioleinianu glicerolu zawiera mieszanina?

18.1-11.
W cząstecze tłuszczu znajdują się: jedna reszta glicerolu i po jednej reszcie kwasów oleinowego, palmitynowego, linolowego. Zapisz wzory półstrukturalne wszystkich możliwych cząsteczek tego tłuszczu. Oblicz, jaką objętość w warkach normalnych zajmie wodór potrzebny do całkowitego utwardzenia (wysycenia) 214 gramów tego tłuszczu przyjmując, że reakcja przebiegnie z 50% wydajnością.

18.1-12.
Zaproponuj cykl przemian, jakim należy poddać tłuszcze, aby otrzymać nitroglicerynę.

Mając do dyspozycji toluen i etanol oraz dowolne odczynniki nieorganiczne, zaplanuj (pisząc odpowiednie równania) sposób otrzymywania kwasu acetylosalicynowego (aspiryny).

18.1-14.
Napisz wzory strukturalne i podaj nazwy wszystkich możliwych estrów o wzorach sumarycznych \(\text{C}_4\text{H}_8\text{O}_2 \), \(\text{C}_5\text{H}_{10}\text{O}_2 \), oraz \(\text{C}_6\text{H}_{12}\text{O}_2 \).

Napisz równania reakcji hydrolizy:
 a) octanu butylu
 b) mrówczanu propylu

18.1-16.
Ułóż równanie alkoholu metylowego z kwasem masłowym. Podaj nazwę produktu reakcji

18.1-17.
Napisz i uzgodnij równania reakcji otrzymywania:
 a) octanu butylu
 b) mrówczanu etylu
 c) propionianu propylu

18.1-18.
Napisz wzory strukturalne, półstrukturalne i nazwy estrów o wzorach sumarycznych:
 a) \(\text{C}_2\text{H}_5\text{COOC}_4\text{H}_9 \)
 b) \(\text{C}_4\text{H}_9\text{COOC}_2\text{H}_5 \)
19. Aminokwasy i białka

19.1.1. Jakie substancje znajdowały się w probówkach I i II, jeżeli po dodaniu kwasu azotowego(V) zawartość probówki I zabarwiła się na żółto, a po dodaniu jodu zawartość probówki II zabarwiła się na granatowo.

19.1.2. Białka ulegają procesowi koagulacji odwracalnej (tzw. wysalanie) lub nieodwracalnemu procesowi denaturacji. Jakie odczynniki powodują każdy z tych procesów?

19.1.4. Za pomocą odpowiednich równań chemicznych wyjaśnij amfoteryczny charakter alaniny

19.1.5. Seryna to aminokwas o wzorze C₃H₇NO₃ zapisz w jakie postaci występuje ten aminokwas w środowisku:
 a) Silnie kwaśnym
 b) w punkcie izoelektrycznym
 c) w silnie zasadowym

19.1.6. Ułóż równania reakcji Otrzymywania tripeptydu: Met-Gly-Ser

19.1.7. Narysuj wzór strukturalny dipeptydu alaninoalaniny i zaznacz wiązanie peptydowe

19.1.8. Ile różnych tetrapeptydów można otrzymać w wyniku kondensacji następujących aminokwasów: glicyna, (Gly), alanina (Ala), lizyna (Liz), walina (Wal). Zapisz tetrapeptydy stosując ich symbole literowe.
20. Cukry

20.1-1. Oblicz stężenie procentowe etanolu, jeżeli fermentacji podano 20% roztwór sacharozy.

20.1-2. 10 dm3 roztworu glukozy poddano fermentacji alkoholowej i otrzymano 224 dm3 tlenu węgla(IV) – (warunki normalne). Oblicz stężenie molowe roztworu glukozy.

20.1-3. Na cząsteczkę amylozy może składać się od 1000 do 4000 połączonych ze sobą w łańcuch pierścieni glukozowych. Pamiętając, że wiązanie pierścieni w łańcuch następuje miedzy czwartym a pierwszym atomem węgla poprzez atom tlenu, oblicz przybliżoną cząsteczkową masę amylozy, złożonej z 4000 jednostek glukozowych.

20.1-4. Spalono całkowicie 0,25 mola cząsteczek tetrozy. Jaka jest objętość użytego w tej reakcji tlenu?

20.1-5. Zakładając, że podczas enzymatycznej hydrolizy amylopektyny, hydrolizie ulegają tylko wiązania glikozydowe 1-4, obliczyć, przy założeniu że rozgałęzienie łańcucha poliglikanowego następuje co 15 jednostek glukozowych jaki % jednostek glukozowych zostanie uwolnionych od formy wolnej glukozy?
21. Nazewnictwo związków i rysowanie wzorów

21.1.1.
Napisz wzory strukturalne uproszczone następujących związków:

a) 1,2,2,4-tetrachloro-3-etyloheksan
b) 4-etylo-2,2-dimetylohept-3-en
c) 4,4-dimetylopen-2-yn

d) 1-etylo-3-metyloheksan

e) 2-metylopropan-1-ol

f) o-chlorofenol

21.1.2.
Narysować wzory;

a) wszystkich izomerycznych kwasów C\textsubscript{4}H\textsubscript{8}O\textsubscript{2}
b) wszystkich izomerycznych kwasów hydroksybenzoesowych
c) wszystkich izomerycznych kwasów cykloheksanodikarboksylowych

21.1.3.
Podaj wzory strukturalne związków o nazwach

a) p – nitrofenol

b) pentanal

c) mrówczan fenylu

d) 2-metylobutan-2-ol

e) hydrochinon

Zaklasyfikuj te związku do określonej grupy związków organicznych.

21.1.4.
Napisz wzory strukturalne następujących związków

a) eter etylowowinylowy

b) kwas 4-okso-heksano-1-karboksylowy

c) heptanian potasu

d) heksanodinitryl

21.1.5.
Podaj nazwę związku:

\[
\text{CH}_3\text{CH}_2\text{CH} - \text{CH} - \text{CH}_3 + \text{HC} = \text{C} - \text{CH} - \text{CH} - \text{CH}_3 + \text{H}_3\text{C} - \text{CH} - \text{CH}_2\text{CH}_3
\]

21.1.6.
Narysuj wzory półstrukturalne następujących związków:

2-chloro-3,5-dietyloptan

2-chloro-2,6-dimetylonan

21.1.7.
Podaj nazwy systematyczne następujących związków:

\[
\text{CH}_3\text{CH} - \text{CH} - \text{CH}_3 \quad \text{CH}_2\text{CH} - \text{CH} - \text{CH}_2\text{CH}_3 \quad \text{CH}_2\text{CH} - \text{CH}_3
\]

21.1.8.
Napisz wzory półstrukturalne związków, do jakiego szeregu homologicznego należy dany związek, podaj wzór ogólny danego szeregu.

3-jodo-2,2-dimetylopen-1, 3-metylo-1-butyn, bromobenzen.
Dla cząsteczek halogenowęglowodorów o następujących nazwach systematycznych narysuj ich wzory strukturalne:

a) 1,4,4-tribromo-5,6,6-trichloro-3-etylo-2,2-dimetyloheptan
b) 4,7-dibromo-2,2-dichloro-5-etylo-6,6-dimetylohept-3-en.
c) 1,6-dibromo-5,5-dichloro-4-etylo-4,6-dimetylohept-2-yn

21.1-10.
Narysuj:
2,4,6 trichlorofenol
1,3 butanodiol
1-hydroksynaftalen
3 buten-2-ol
trifenylometan

Narysuj wzory strukturalne i półstrukturalne:
a) prop-2-yn
b) 2,4,4-trimetyloheksan
c) 2,2-dimetylopentan

21.1-12.
Podaj wzory i nazwy związków o składzie:
a) C₂H₂N
b) C₃H₆N

Podaj nazwy systematyczne poniższych aminokwasów:

a) CH₃-CH-CH₂-COOH
 \[\text{NH}_₂ \]

b) H₂N--CH₂-CH₂-CH₂-COOH

 \[\text{CH}_₃ \]

 \[\text{NH}_₂ \]

c) CH₃-C-CH₂-CH-COOH

 \[\text{CH}_₃ \]

 \[\text{NH}_₂ \]

Podaj wzór półstrukturalne i strukturalne alkanu który szeregu homologicznym alkanów zajmuje pozycję

a) 3
b) 6
c) 9